These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16891154)
21. Biological response of human bone cells to zinc-modified Ca-Si-based ceramics. Ramaswamy Y; Wu C; Zhou H; Zreiqat H Acta Biomater; 2008 Sep; 4(5):1487-97. PubMed ID: 18501689 [TBL] [Abstract][Full Text] [Related]
22. Biological and antibacterial properties of plasma sprayed wollastonite coatings grafting gentamicin loaded collagen. Li B; Liu X; Cao C; Dong Y; Wang Z; Ding C J Biomed Mater Res A; 2008 Oct; 87(1):84-90. PubMed ID: 18085657 [TBL] [Abstract][Full Text] [Related]
23. Silicon-substituted hydroxyapatite thin films: effect of annealing temperature on coating stability and bioactivity. Thian ES; Huang J; Best SM; Barber ZH; Bonfield W J Biomed Mater Res A; 2006 Jul; 78(1):121-8. PubMed ID: 16604532 [TBL] [Abstract][Full Text] [Related]
24. Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition. Liu X; Huang A; Ding C; Chu PK Biomaterials; 2006 Jul; 27(21):3904-11. PubMed ID: 16564082 [TBL] [Abstract][Full Text] [Related]
25. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
26. Osteoblast differentiation and disinfection induced by nitrogen plasma-treated surfaces. Zhang W; Wang H; Oyane A; Tsurushima H; Chu PK Biomed Mater Eng; 2011; 21(2):75-82. PubMed ID: 21654064 [TBL] [Abstract][Full Text] [Related]
27. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion. Randeniya LK; Bendavid A; Martin PJ; Amin MS; Preston EW; Magdon Ismail FS; Coe S Acta Biomater; 2009 Jun; 5(5):1791-7. PubMed ID: 19233753 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
29. Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. Liu XM; Wu SL; Chan YL; Chu PK; Chung CY; Chu CL; Yeung KW; Lu WW; Cheung KM; Luk KD J Biomed Mater Res A; 2007 Aug; 82(2):469-78. PubMed ID: 17295249 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
31. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
32. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
33. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
34. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
35. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Vitale-Brovarone C; Verné E; Robiglio L; Appendino P; Bassi F; Martinasso G; Muzio G; Canuto R Acta Biomater; 2007 Mar; 3(2):199-208. PubMed ID: 17085090 [TBL] [Abstract][Full Text] [Related]
36. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Kodama T; Goto T; Miyazaki T; Takahashi T Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269 [TBL] [Abstract][Full Text] [Related]
38. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Ning C; Zhou Y Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711 [TBL] [Abstract][Full Text] [Related]
39. Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Wang H; Ji J; Zhang W; Zhang Y; Jiang J; Wu Z; Pu S; Chu PK Acta Biomater; 2009 Jan; 5(1):279-87. PubMed ID: 18760682 [TBL] [Abstract][Full Text] [Related]
40. Influence of structured wafer surfaces on the characteristics of Caco-2 cells. Guell I; Wanzenboeck HD; Forouzan SS; Bertagnolli E; Bogner E; Gabor F; Wirth M Acta Biomater; 2009 Jan; 5(1):288-97. PubMed ID: 18774348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]