BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16891365)

  • 1. Rheology of passive and adhesion-activated neutrophils probed by atomic force microscopy.
    Roca-Cusachs P; Almendros I; Sunyer R; Gavara N; Farré R; Navajas D
    Biophys J; 2006 Nov; 91(9):3508-18. PubMed ID: 16891365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microrheology of human lung epithelial cells measured by atomic force microscopy.
    Alcaraz J; Buscemi L; Grabulosa M; Trepat X; Fabry B; Farré R; Navajas D
    Biophys J; 2003 Mar; 84(3):2071-9. PubMed ID: 12609908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ Microrheological Determination of Neutrophil Stiffening Following Adhesion in a Model Capillary.
    Pai A; Sundd P; Tees DF
    Ann Biomed Eng; 2008 Apr; 36(4):596-603. PubMed ID: 18214680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local rheology of human neutrophils investigated using atomic force microscopy.
    Lee YJ; Patel D; Park S
    Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The number distribution of complex shear modulus of single cells measured by atomic force microscopy.
    Hiratsuka S; Mizutani Y; Tsuchiya M; Kawahara K; Tokumoto H; Okajima T
    Ultramicroscopy; 2009 Jul; 109(8):937-41. PubMed ID: 19345501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy.
    Luque T; Melo E; Garreta E; Cortiella J; Nichols J; Farré R; Navajas D
    Acta Biomater; 2013 Jun; 9(6):6852-9. PubMed ID: 23470549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive mechanical behavior of human neutrophils: power-law fluid.
    Tsai MA; Frank RS; Waugh RE
    Biophys J; 1993 Nov; 65(5):2078-88. PubMed ID: 8298037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes.
    Komai Y; Schmid-Schönbein GW
    Ann Biomed Eng; 2005 Oct; 33(10):1375-86. PubMed ID: 16240086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin.
    Gopalan PK; Smith CW; Lu H; Berg EL; McIntire LV; Simon SI
    J Immunol; 1997 Jan; 158(1):367-75. PubMed ID: 8977212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior.
    Schmitt C; Hadj Henni A; Cloutier G
    J Biomech; 2011 Feb; 44(4):622-9. PubMed ID: 21122863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical forces induced by the transendothelial migration of human neutrophils.
    Rabodzey A; Alcaide P; Luscinskas FW; Ladoux B
    Biophys J; 2008 Aug; 95(3):1428-38. PubMed ID: 18390614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology of twist-grain-boundary-A liquid crystals.
    Sahoo R; Ananthaiah J; Dabrowski R; Dhara S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012506. PubMed ID: 25122323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust strategies for automated AFM force curve analysis-II: adhesion-influenced indentation of soft, elastic materials.
    Lin DC; Dimitriadis EK; Horkay F
    J Biomech Eng; 2007 Dec; 129(6):904-12. PubMed ID: 18067395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrophil dysfunction after biomaterial contact in an in vitro model of cardiopulmonary bypass.
    Asberg AE; Videm V
    Eur J Cardiothorac Surg; 2006 Nov; 30(5):744-8. PubMed ID: 17029835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of equine neutrophil adherence and migration by the annexin-1 derived N-terminal peptide, Ac2-26.
    Brooks AC; Rickards KJ; Cunningham FM
    Vet Immunol Immunopathol; 2012 Jan; 145(1-2):214-22. PubMed ID: 22197008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-strain dynamic rheology of food protein networks.
    Tunick MH
    J Agric Food Chem; 2011 Mar; 59(5):1481-6. PubMed ID: 20604509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Biophys J; 2006 Apr; 90(8):2994-3003. PubMed ID: 16443660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy.
    Chim YH; Mason LM; Rath N; Olson MF; Tassieri M; Yin H
    Sci Rep; 2018 Sep; 8(1):14462. PubMed ID: 30262873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of functional responses in differentiated myeloid cell lines reveals EPRO cells as a valid model of murine neutrophil functional activation.
    Gaines P; Chi J; Berliner N
    J Leukoc Biol; 2005 May; 77(5):669-79. PubMed ID: 15673544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.