These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16891657)

  • 1. Excitation-contraction coupling in airway smooth muscle.
    Du W; McMahon TJ; Zhang ZS; Stiber JA; Meissner G; Eu JP
    J Biol Chem; 2006 Oct; 281(40):30143-51. PubMed ID: 16891657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ signaling in microdomains: Homer1 mediates the interaction between RyR2 and Cav1.2 to regulate excitation-contraction coupling.
    Huang G; Kim JY; Dehoff M; Mizuno Y; Kamm KE; Worley PF; Muallem S; Zeng W
    J Biol Chem; 2007 May; 282(19):14283-90. PubMed ID: 17355963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction.
    Du W; Stiber JA; Rosenberg PB; Meissner G; Eu JP
    J Biol Chem; 2005 Jul; 280(28):26287-94. PubMed ID: 15894801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of functional ryanodine receptors in rat mesenteric collecting lymphatic vessels.
    Jo M; Trujillo AN; Yang Y; Breslin JW
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H561-H574. PubMed ID: 31274355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling.
    Schredelseker J; Shrivastav M; Dayal A; Grabner M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5658-63. PubMed ID: 20212109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
    Brillantes AM; Bezprozvannaya S; Marks AR
    Circ Res; 1994 Sep; 75(3):503-10. PubMed ID: 8062423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes.
    Murayama T; Kurebayashi N
    Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-type Ca(2+) channels, Ca(2+)-induced Ca(2+) release, and BK(Ca) channels in airway stretch-induced contraction.
    Hernandez JM; Janssen LJ
    Eur J Pharmacol; 2012 Dec; 696(1-3):161-5. PubMed ID: 23022333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle.
    Dulhunty AF; Haarmann CS; Green D; Laver DR; Board PG; Casarotto MG
    Prog Biophys Mol Biol; 2002; 79(1-3):45-75. PubMed ID: 12225776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor.
    Grabner M; Dirksen RT; Suda N; Beam KG
    J Biol Chem; 1999 Jul; 274(31):21913-9. PubMed ID: 10419512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.
    Nabhani T; Zhu X; Simeoni I; Sorrentino V; Valdivia HH; GarcĂ­a J
    Biophys J; 2002 Mar; 82(3):1319-28. PubMed ID: 11867448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional nonequality of the cardiac and skeletal ryanodine receptors.
    Nakai J; Ogura T; Protasi F; Franzini-Armstrong C; Allen PD; Beam KG
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):1019-22. PubMed ID: 9023375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of two ryanodine receptor isoforms coexisting in skeletal muscle.
    Murayama T; Ogawa Y
    Trends Cardiovasc Med; 2002 Oct; 12(7):305-11. PubMed ID: 12458093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle.
    Protasi F; Paolini C; Nakai J; Beam KG; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Dec; 83(6):3230-44. PubMed ID: 12496092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices.
    Berrout J; Isokawa M
    Cell Calcium; 2009 Jul; 46(1):30-8. PubMed ID: 19411104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release.
    Collier ML; Ji G; Wang Y; Kotlikoff MI
    J Gen Physiol; 2000 May; 115(5):653-62. PubMed ID: 10779321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.