BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16891664)

  • 21. Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface.
    Igarashi K; Wada M; Hori R; Samejima M
    FEBS J; 2006 Jul; 273(13):2869-78. PubMed ID: 16759230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model.
    O'Dwyer JP; Zhu L; Granda CB; Holtzapple MT
    Bioresour Technol; 2007 Nov; 98(16):2969-77. PubMed ID: 17140790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of cellulase inhibitors to produce cellobiose.
    Kim M; Day DF
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1379-90. PubMed ID: 20703956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A functionally based model for hydrolysis of cellulose by fungal cellulase.
    Zhang YH; Lynd LR
    Biotechnol Bioeng; 2006 Aug; 94(5):888-98. PubMed ID: 16685742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A kinetic model for simultaneous saccharification and fermentation of Avicel with Saccharomyces cerevisiae.
    van Zyl JM; van Rensburg E; van Zyl WH; Harms TM; Lynd LR
    Biotechnol Bioeng; 2011 Apr; 108(4):924-33. PubMed ID: 21404265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose.
    Nidetzky B; Steiner W
    Biotechnol Bioeng; 1993 Aug; 42(4):469-79. PubMed ID: 18613051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of cellobiose hydrolysis using cellobiase composites from Ttrichoderma reesei and Aspergillus niger.
    Grous W; Converse A; Grethlein H; Lynd L
    Biotechnol Bioeng; 1985 Apr; 27(4):463-70. PubMed ID: 18553694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging.
    Jung J; Sethi A; Gaiotto T; Han JJ; Jeoh T; Gnanakaran S; Goodwin PM
    J Biol Chem; 2013 Aug; 288(33):24164-72. PubMed ID: 23818525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose.
    Olsen JP; Alasepp K; Kari J; Cruys-Bagger N; Borch K; Westh P
    Biotechnol Bioeng; 2016 Jun; 113(6):1178-86. PubMed ID: 26636743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.
    Kuusk S; Sørlie M; Väljamäe P
    J Biol Chem; 2015 May; 290(18):11678-91. PubMed ID: 25767120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of novel glucanases from Trichoderma harzianum ETS 323.
    Liu SY; Shibu MA; Jhan HJ; Lo CT; Peng KC
    J Agric Food Chem; 2010 Oct; 58(19):10309-14. PubMed ID: 20815353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds.
    Bu L; Beckham GT; Crowley MF; Chang CH; Matthews JF; Bomble YJ; Adney WS; Himmel ME; Nimlos MR
    J Phys Chem B; 2009 Aug; 113(31):10994-1002. PubMed ID: 19594145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of automated nano-electrospray mass spectrometry in the determination of non-covalent protein-ligand complexes.
    De Vriendt K; Sandra K; Desmet T; Nerinckx W; Van Beeumen J; Devreese B
    Rapid Commun Mass Spectrom; 2004; 18(24):3061-7. PubMed ID: 15543530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A steady-state theory for processive cellulases.
    Cruys-Bagger N; Elmerdahl J; Praestgaard E; Borch K; Westh P
    FEBS J; 2013 Aug; 280(16):3952-61. PubMed ID: 23786663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus.
    Zhang J; Viikari L
    Bioresour Technol; 2012 Aug; 117():286-91. PubMed ID: 22613900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry.
    Maurer SA; Brady NW; Fajardo NP; Radke CJ
    J Colloid Interface Sci; 2013 Mar; 394():498-508. PubMed ID: 23347999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic modeling of enzymatic hydrolysis of cellulose integrating substrate morphology and cocktail composition.
    Huron M; Hudebine D; Lopes Ferreira N; Lachenal D
    Biotechnol Bioeng; 2016 May; 113(5):1011-23. PubMed ID: 26524470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis.
    Santa-Maria M; Jeoh T
    Biomacromolecules; 2010 Aug; 11(8):2000-7. PubMed ID: 20583829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: cooperative enzyme action, solution kinetics, and product inhibition.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):676-85. PubMed ID: 22034106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.