BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16891756)

  • 1. Effect of blood lactate concentration and the level of oxygen uptake immediately before a cycling sprint on neuromuscular activation during repeated cycling sprints.
    Matsuura R; Ogata H; Yunoki T; Arimitsu T; Yano T
    J Physiol Anthropol; 2006 Jul; 25(4):267-73. PubMed ID: 16891756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of resistive load on performance and surface EMG activity during repeated cycling sprints on a non-isokinetic cycle ergometer.
    Matsuura R; Arimitsu T; Yunoki T; Yano T
    Br J Sports Med; 2011 Aug; 45(10):820-4. PubMed ID: 19952377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints.
    Matsuura R; Arimitsu T; Kimura T; Yunoki T; Yano T
    Eur J Appl Physiol; 2007 Nov; 101(4):409-17. PubMed ID: 17628824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 350-S recovery period does not necessarily allow complete recovery of peak power output during repeated cycling sprints.
    Matsuura R; Ogata H; Yunoki T; Arimitsu T; Kimura T; Yano T
    J Physiol Anthropol; 2007 Mar; 26(2):51-7. PubMed ID: 17435344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal lactate steady state, critical power and EMG during cycling.
    Pringle JS; Jones AM
    Eur J Appl Physiol; 2002 Dec; 88(3):214-26. PubMed ID: 12458364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S; Bishop D; Denis R; Lattier G; Mendez-Villaneuva A; Perrey S
    Med Sci Sports Exerc; 2007 Feb; 39(2):268-74. PubMed ID: 17277590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity.
    Mendez-Villanueva A; Hamer P; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(4):411-9. PubMed ID: 18368419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of hyperoxia on repeated sprint cycling performance & muscle fatigue.
    Porter MS; Fenton J; Reed KE
    J Sci Med Sport; 2019 Dec; 22(12):1344-1348. PubMed ID: 31337587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human muscle power generating capability during cycling at different pedalling rates.
    Zoladz JA; Rademaker AC; Sargeant AJ
    Exp Physiol; 2000 Jan; 85(1):117-24. PubMed ID: 10662901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling.
    Theurel J; Lepers R
    Eur J Appl Physiol; 2008 Jul; 103(4):461-8. PubMed ID: 18415118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of high-intensity intermittent cycling sprints on neuromuscular activity.
    Billaut F; Basset FA; Giacomoni M; Lemaître F; Tricot V; Falgairette G
    Int J Sports Med; 2006 Jan; 27(1):25-30. PubMed ID: 16388438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test.
    Tenan MS; McMurray RG; Blackburn BT; McGrath M; Leppert K
    J Electromyogr Kinesiol; 2011 Feb; 21(1):25-32. PubMed ID: 20934353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of deception for intensity on surface electromyogram (SEMG) activity and blood lactate concentration during intermittent cycling followed by exhaustive cycling.
    Matsuura R; Arimitsu T; Yunoki T; Kimura T; Yamanaka R; Yano T
    Acta Physiol Hung; 2013 Mar; 100(1):54-63. PubMed ID: 23471041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adding Whole-Body Vibration to Preconditioning Squat Exercise Increases Cycling Sprint Performance.
    Duc S; Rønnestad BR; Bertucci W
    J Strength Cond Res; 2020 May; 34(5):1354-1361. PubMed ID: 28902116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males.
    Monks MR; Compton CT; Yetman JD; Power KE; Button DC
    J Sci Med Sport; 2017 Jun; 20(6):600-605. PubMed ID: 27825551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics.
    Girard O; Bishop DJ; Racinais S
    Eur J Appl Physiol; 2013 Feb; 113(2):359-69. PubMed ID: 22743981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions.
    Kay D; Marino FE; Cannon J; St Clair Gibson A; Lambert MI; Noakes TD
    Eur J Appl Physiol; 2001; 84(1-2):115-21. PubMed ID: 11394239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction.
    Willis SJ; Alvarez L; Borrani F; Millet GP
    Physiol Rep; 2018 Sep; 6(19):e13872. PubMed ID: 30295004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.
    Ražanskas P; Verikas A; Olsson C; Viberg PA
    Sensors (Basel); 2015 Aug; 15(8):20480-500. PubMed ID: 26295396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise.
    Ohya T; Aramaki Y; Kitagawa K
    Int J Sports Med; 2013 Jul; 34(7):616-22. PubMed ID: 23325717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.