These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16891756)

  • 21. Effects of age and mode of exercise on power output profiles during repeated sprints.
    Ratel S; Williams CA; Oliver J; Armstrong N
    Eur J Appl Physiol; 2004 Jun; 92(1-2):204-10. PubMed ID: 15045504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance and metabolism in repeated sprint exercise: effect of recovery intensity.
    Spencer M; Dawson B; Goodman C; Dascombe B; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(5):545-52. PubMed ID: 18443815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuromuscular fatigability during repeated-sprint exercise in male athletes.
    Goodall S; Charlton K; Howatson G; Thomas K
    Med Sci Sports Exerc; 2015 Mar; 47(3):528-36. PubMed ID: 25010404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of fluid ingestion on neuromuscular function during prolonged cycling exercise.
    Vallier JM; Grego F; Basset F; Lepers R; Bernard T; Brisswalter J
    Br J Sports Med; 2005 Apr; 39(4):e17. PubMed ID: 15793075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Etiology of Neuromuscular Fatigue After Repeated Sprints Depends on Exercise Modality.
    Tomazin K; Morin JB; Millet GY
    Int J Sports Physiol Perform; 2017 Aug; 12(7):878-885. PubMed ID: 27918667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prior heavy knee extension exercise does not affect V̇O₂ kinetics during subsequent heavy cycling exercise.
    Thistlethwaite JR; Thompson BC; Gonzales JU; Scheuermann BW
    Eur J Appl Physiol; 2008 Mar; 102(4):481-91. PubMed ID: 18026978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of active recovery on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK; Graham CM; Louis G
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):461-9. PubMed ID: 8954294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of hydrogen rich water on prolonged intermittent exercise.
    Da Ponte A; Giovanelli N; Nigris D; Lazzer S
    J Sports Med Phys Fitness; 2018 May; 58(5):612-621. PubMed ID: 28474871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists.
    Creer AR; Ricard MD; Conlee RK; Hoyt GL; Parcell AC
    Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between power output, lactate, skin temperature, and muscle activity during brief repeated exercises with increasing intensity.
    Temfemo A; Carling C; Ahmaidi S
    J Strength Cond Res; 2011 Apr; 25(4):915-21. PubMed ID: 21358434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peripheral neuromuscular fatigue induced by repeated-sprint exercise: cycling vs. running.
    Rampinini E; Connolly DR; Ferioli D; La Torre A; Alberti G; Bosio A
    J Sports Med Phys Fitness; 2016; 56(1-2):49-59. PubMed ID: 25289713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute effects of repeated cycling sprints in hypoxia induced by voluntary hypoventilation.
    Woorons X; Mucci P; Aucouturier J; Anthierens A; Millet GP
    Eur J Appl Physiol; 2017 Dec; 117(12):2433-2443. PubMed ID: 29032393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pedaling rates and myosin heavy chain composition in the vastus lateralis muscle on the power generating capability during incremental cycling in humans.
    Majerczak J; Szkutnik Z; Duda K; Komorowska M; Kolodziejski L; Karasinski J; Zoladz JA
    Physiol Res; 2008; 57(6):873-884. PubMed ID: 18052677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints.
    Hureau TJ; Ducrocq GP; Blain GM
    Med Sci Sports Exerc; 2016 Mar; 48(3):391-401. PubMed ID: 26496420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The science of cycling: physiology and training - part 1.
    Faria EW; Parker DL; Faria IE
    Sports Med; 2005; 35(4):285-312. PubMed ID: 15831059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling.
    Broatch JR; Bishop DJ; Halson S
    Int J Sports Physiol Perform; 2018 Aug; 13(7):882-890. PubMed ID: 29252067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns.
    Giacomoni M; Billaut F; Falgairette G
    Int J Sports Med; 2006 Jun; 27(6):468-74. PubMed ID: 16586326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance.
    Zoladz JA; Duda K; Majerczak J
    Physiol Res; 1998; 47(6):427-38. PubMed ID: 10453750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of two pedalling rate conditions on mechanical output and physiological responses during all-out intermittent exercise.
    Dorel S; Bourdin M; Van Praagh E; Lacour JR; Hautier CA
    Eur J Appl Physiol; 2003 Apr; 89(2):157-65. PubMed ID: 12665979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.