These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Role of fibronectin in staphylococcal adhesion to metallic surfaces used as models of orthopaedic devices. Delmi M; Vaudaux P; Lew DP; Vasey H J Orthop Res; 1994 May; 12(3):432-8. PubMed ID: 8207597 [TBL] [Abstract][Full Text] [Related]
4. Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study. Shida T; Koseki H; Yoda I; Horiuchi H; Sakoda H; Osaki M Int J Nanomedicine; 2013; 8():3955-61. PubMed ID: 24143100 [TBL] [Abstract][Full Text] [Related]
5. Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Ha KY; Chung YG; Ryoo SJ Spine (Phila Pa 1976); 2005 Jan; 30(1):38-43. PubMed ID: 15626979 [TBL] [Abstract][Full Text] [Related]
6. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. Yoda I; Koseki H; Tomita M; Shida T; Horiuchi H; Sakoda H; Osaki M BMC Microbiol; 2014 Sep; 14():234. PubMed ID: 25179448 [TBL] [Abstract][Full Text] [Related]
7. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials. Schildhauer TA; Peter E; Muhr G; Köller M J Biomed Mater Res A; 2009 Feb; 88(2):332-41. PubMed ID: 18286637 [TBL] [Abstract][Full Text] [Related]
8. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: 'the race to the surface' studied in vitro. McConda DB; Karnes JM; Hamza T; Lindsey BA Biofouling; 2016 Jul; 32(6):627-34. PubMed ID: 27142312 [TBL] [Abstract][Full Text] [Related]
9. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Serhan H; Slivka M; Albert T; Kwak SD Spine J; 2004; 4(4):379-87. PubMed ID: 15246296 [TBL] [Abstract][Full Text] [Related]
10. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290 [TBL] [Abstract][Full Text] [Related]
11. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon. Levon J; Myllymaa K; Kouri VP; Rautemaa R; Kinnari T; Myllymaa S; Konttinen YT; Lappalainen R J Biomed Mater Res A; 2010 Mar; 92(4):1606-13. PubMed ID: 19437436 [TBL] [Abstract][Full Text] [Related]
12. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study. Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350 [TBL] [Abstract][Full Text] [Related]
13. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials. Adachi K; Tsurumoto T; Yonekura A; Nishimura S; Kajiyama S; Hirakata Y; Shindo H J Orthop Sci; 2007 Mar; 12(2):178-84. PubMed ID: 17393274 [TBL] [Abstract][Full Text] [Related]
14. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. Koseki H; Yonekura A; Shida T; Yoda I; Horiuchi H; Morinaga Y; Yanagihara K; Sakoda H; Osaki M; Tomita M PLoS One; 2014; 9(10):e107588. PubMed ID: 25299658 [TBL] [Abstract][Full Text] [Related]
15. Does low hydroxyl group surface density explain less bacterial adhesion on porous alumina? Poli E; Ouk TS; Barrière G; Lévèque G; Sol V; Denes E Orthop Traumatol Surg Res; 2019 May; 105(3):473-477. PubMed ID: 30612953 [TBL] [Abstract][Full Text] [Related]
16. Titanium and steel fracture fixation plates with different surface topographies: Influence on infection rate in a rabbit fracture model. Metsemakers WJ; Schmid T; Zeiter S; Ernst M; Keller I; Cosmelli N; Arens D; Moriarty TF; Richards RG Injury; 2016 Mar; 47(3):633-9. PubMed ID: 26830128 [TBL] [Abstract][Full Text] [Related]
17. The impact of thermal cycling on Staphylococcus aureus biofilm growth on stainless steel and titanium orthopaedic plates. Akens MK; Chien C; Katchky RN; Kreder HJ; Finkelstein J; Whyne CM BMC Musculoskelet Disord; 2018 Jul; 19(1):260. PubMed ID: 30049271 [TBL] [Abstract][Full Text] [Related]
18. Adhesion force of staphylococcus aureus on various biomaterial surfaces. Alam F; Balani K J Mech Behav Biomed Mater; 2017 Jan; 65():872-880. PubMed ID: 27814559 [TBL] [Abstract][Full Text] [Related]
19. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation. McGaffey M; Zur Linden A; Bachynski N; Oblak M; James F; Weese JS PLoS One; 2019; 14(2):e0212995. PubMed ID: 30811509 [TBL] [Abstract][Full Text] [Related]
20. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection. Aguilera-Correa JJ; Conde A; Arenas MA; de-Damborenea JJ; Marin M; Doadrio AL; Esteban J Biomed Mater; 2017 Aug; 12(4):045022. PubMed ID: 28799523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]