These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1126 related articles for article (PubMed ID: 16892078)

  • 1. Glycolysis inhibition for anticancer treatment.
    Pelicano H; Martin DS; Xu RH; Huang P
    Oncogene; 2006 Aug; 25(34):4633-46. PubMed ID: 16892078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg effect and its cancer therapeutic implications.
    Chen Z; Lu W; Garcia-Prieto C; Huang P
    J Bioenerg Biomembr; 2007 Jun; 39(3):267-74. PubMed ID: 17551814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.
    Xu RH; Pelicano H; Zhou Y; Carew JS; Feng L; Bhalla KN; Keating MJ; Huang P
    Cancer Res; 2005 Jan; 65(2):613-21. PubMed ID: 15695406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment.
    Littleflower AB; Parambil ST; Antony GR; Subhadradevi L
    Biochimie; 2024 May; 220():107-121. PubMed ID: 38184121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.
    Cardaci S; Desideri E; Ciriolo MR
    J Bioenerg Biomembr; 2012 Feb; 44(1):17-29. PubMed ID: 22328057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery.
    Talekar M; Boreddy SR; Singh A; Amiji M
    Expert Opin Biol Ther; 2014 Aug; 14(8):1145-59. PubMed ID: 24762115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer cell metabolism: implications for therapeutic targets.
    Jang M; Kim SS; Lee J
    Exp Mol Med; 2013 Oct; 45(10):e45. PubMed ID: 24091747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor glycolysis as a target for cancer therapy: progress and prospects.
    Ganapathy-Kanniappan S; Geschwind JF
    Mol Cancer; 2013 Dec; 12():152. PubMed ID: 24298908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents.
    Sheng H; Tang W
    Recent Pat Anticancer Drug Discov; 2016; 11(3):297-308. PubMed ID: 27087655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?
    López-Lázaro M
    Anticancer Agents Med Chem; 2008 Apr; 8(3):305-12. PubMed ID: 18393789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy.
    Abdel-Wahab AF; Mahmoud W; Al-Harizy RM
    Pharmacol Res; 2019 Dec; 150():104511. PubMed ID: 31678210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy.
    Shi Y; Liu S; Ahmad S; Gao Q
    Curr Top Med Chem; 2018; 18(6):454-466. PubMed ID: 29788889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade.
    Fortunato S; Bononi G; Granchi C; Minutolo F
    ChemMedChem; 2018 Nov; 13(21):2251-2265. PubMed ID: 30226288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible therapeutic targets among the molecules involved in the Warburg effect in tumor cells.
    Nam SO; Yotsumoto F; Miyata K; Shirasu N; Miyamoto S; Kuroki M
    Anticancer Res; 2013 Jul; 33(7):2855-60. PubMed ID: 23780970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 and glucose metabolism: an orchestra to be directed in cancer therapy.
    Gomes AS; Ramos H; Soares J; Saraiva L
    Pharmacol Res; 2018 May; 131():75-86. PubMed ID: 29580896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on therapeutic opportunities offered by cancer glycolytic metabolism.
    Granchi C; Fancelli D; Minutolo F
    Bioorg Med Chem Lett; 2014 Nov; 24(21):4915-25. PubMed ID: 25288186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer agents that counteract tumor glycolysis.
    Granchi C; Minutolo F
    ChemMedChem; 2012 Aug; 7(8):1318-50. PubMed ID: 22684868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting hypoxic response for cancer therapy.
    Paolicchi E; Gemignani F; Krstic-Demonacos M; Dedhar S; Mutti L; Landi S
    Oncotarget; 2016 Mar; 7(12):13464-78. PubMed ID: 26859576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.