These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16892126)

  • 1. Overcoming the impeding effect of core-cladding interface on the progression of the second-order nonlinearity in thermally poled optical fibers.
    An H; Fleming S
    Appl Opt; 2006 Aug; 45(24):6212-7. PubMed ID: 16892126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating second-order nonlinearity in pure synthetic silica optical fibers by thermal poling.
    An H; Fleming S
    Opt Lett; 2007 Apr; 32(7):832-4. PubMed ID: 17339952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers.
    An H; Fleming S
    Opt Express; 2005 May; 13(9):3500-5. PubMed ID: 19495254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindering effect of the core-cladding interface in thermally poled optical fibers.
    Huang L; Ren G; Gao Y; Zhu B; Sun X
    Appl Opt; 2015 Jun; 54(18):5771-6. PubMed ID: 26193028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large optical second-order nonlinearity of poled WO3-TeO2 glass.
    Tanaka K; Narazaki A; Hirao K
    Opt Lett; 2000 Feb; 25(4):251-3. PubMed ID: 18059845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 200-m optical fiber with an integrated electrode and its poling.
    Lee K; Hu P; Blows JL; Thorncraft D; Baxter J
    Opt Lett; 2004 Sep; 29(18):2124-6. PubMed ID: 15460877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials deposition.
    De Lucia F; Lewis AH; Englebert N; Bannerman R; Nunez Velazquez MMA; Huang CC; Gates JC; Gorza SP; Sahu J; Hewak D; Sazio P
    Opt Express; 2020 Nov; 28(23):34461-34471. PubMed ID: 33182915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations.
    An H; Fleming S
    Opt Express; 2012 Mar; 20(7):7436-44. PubMed ID: 22453423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of thermally poled fibers with a two-dimensional model.
    Camara A; Tarasenko O; Margulis W
    Opt Express; 2014 Jul; 22(15):17700-15. PubMed ID: 25089390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humidity effect on the decay of second-order nonlinearity in thermally poled fused silica.
    Chen HY; Chang FF; Liao JC; Chao S
    Opt Express; 2006 Dec; 14(25):12334-40. PubMed ID: 19529662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a second-order nonlinear layer profile in thermally poled optical fibers with second-harmonic microscopy.
    An H; Fleming S
    Opt Lett; 2005 Apr; 30(8):866-8. PubMed ID: 15865381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.
    Liu Z; Bo F; Wang L; Tian F; Yuan L
    Opt Lett; 2011 Jul; 36(13):2435-7. PubMed ID: 21725436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal poling of multi-wire array optical fiber.
    Huang L; An H; Hayashi JG; Ren G; Stefani A; Fleming S
    Opt Express; 2018 Jan; 26(2):674-679. PubMed ID: 29401949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant Enhancement of Optical Second Harmonic in Poled Glasses by Cold Repoling.
    Reshetov I; Scherbak S; Tagantsev D; Zhurikhina V; Lipovskii A
    J Phys Chem Lett; 2022 Jun; 13(25):5932-5937. PubMed ID: 35731910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the space-charge field formation in thermally poled optical fibers: a new two-rate model for hydrogenated cations.
    Huang L; An H; Ren G; Fleming S
    Opt Lett; 2017 Feb; 42(4):819-822. PubMed ID: 28198873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical fiber poling by induction.
    De Lucia F; Huang D; Corbari C; Healy N; Sazio PJ
    Opt Lett; 2014 Nov; 39(22):6513-6. PubMed ID: 25490507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time evolution of frozen-in field during poling of fiber with alloy electrodes.
    Myrén N; Margulis W
    Opt Express; 2005 May; 13(9):3438-44. PubMed ID: 19495246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large second-order nonlinearity in poled fused silica.
    Myers RA; Mukherjee N; Brueck SR
    Opt Lett; 1991 Nov; 16(22):1732-4. PubMed ID: 19784122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber.
    Cheng T; Gao W; Kawashima H; Deng D; Liao M; Matsumoto M; Misumi T; Suzuki T; Ohishi Y
    Opt Lett; 2014 Apr; 39(7):2145-7. PubMed ID: 24686696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single is better than double: theoretical and experimental comparison between two thermal poling configurations of optical fibers.
    De Lucia F; Bannerman R; Englebert N; Nunez Velazquez MMA; Leo F; Gates J; Gorza SP; Sahu J; Sazio PJA
    Opt Express; 2019 Sep; 27(20):27761-27776. PubMed ID: 31684538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.