BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 16892364)

  • 1. Tuning wasp toxin structure for nicotinic receptor antagonism: cyclohexylalanine-containing analogues as potent and voltage-dependent blockers.
    Olsen CA; Mellor IR; Wellendorph P; Usherwood PN; Witt M; Franzyk H; Jaroszewski JW
    ChemMedChem; 2006 Mar; 1(3):303-5. PubMed ID: 16892364
    [No Abstract]   [Full Text] [Related]  

  • 2. Polyamine toxins: development of selective ligands for ionotropic receptors.
    Strømgaard K; Jensen LS; Vogensen SB
    Toxicon; 2005 Mar; 45(3):249-54. PubMed ID: 15683862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-binding relation of philanthotoxins from nicotinic acetylcholine receptor binding assay.
    Nakanishi K; Huang X; Jiang H; Liu Y; Fang K; Huang D; Choi SK; Katz E; Eldefrawi M
    Bioorg Med Chem; 1997 Oct; 5(10):1969-88. PubMed ID: 9370041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protolytic properties of polyamine wasp toxin analogues studied by 13C NMR spectroscopy.
    Strømgaard K; Piazzi L; Olsen CA; Franzyk H; Jaroszewski JW
    Magn Reson Chem; 2006 Nov; 44(11):1013-22. PubMed ID: 16941578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationship and site of binding of polyamine derivatives at the nicotinic acetylcholine receptor.
    Bixel MG; Krauss M; Liu Y; Bolognesi ML; Rosini M; Mellor IS; Usherwood PN; Melchiorre C; Nakanishi K; Hucho F
    Eur J Biochem; 2000 Jan; 267(1):110-20. PubMed ID: 10601857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and biological properties of biotinylated PhTX derivatives.
    Hashimoto M; Liu Y; Fang K; Li HY; Campiani G; Nakanishi K
    Bioorg Med Chem; 1999 Jun; 7(6):1181-94. PubMed ID: 10428390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor.
    Stromgaard K; Brierley MJ; Andersen K; Sløk FA; Mellor IR; Usherwood PN; Krogsgaard-Larsen P; Jaroszewski JW
    J Med Chem; 1999 Dec; 42(25):5224-34. PubMed ID: 10602707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid phase syntheses of polyamine toxins HO-416b and PhTX-433. Use of an efficient polyamide reduction strategy that facilitates access to branched analogues.
    Wang F; Manku S; Hall DG
    Org Lett; 2000 Jun; 2(11):1581-3. PubMed ID: 10841484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and paralytic activities of squaryl amino acid-containing polyamine toxins.
    Shinada T; Nakagawa Y; Hayashi K; Corzo G; Nakajima T; Ohfune Y
    Amino Acids; 2003 Apr; 24(3):293-301. PubMed ID: 12707812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymethylene tetraamine backbone as template for the development of biologically active polyamines.
    Melchiorre C; Antonello A; Banzi R; Bolognesi ML; Minarini A; Rosini M; Tumiatti V
    Med Res Rev; 2003 Mar; 23(2):200-33. PubMed ID: 12500289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncompetitive antagonism of AMPA receptors: Mechanistic insights from studies of polyamine toxin derivatives.
    Andersen TF; Tikhonov DB; Bølcho U; Bolshakov K; Nelson JK; Pluteanu F; Mellor IR; Egebjerg J; Strømgaard K
    J Med Chem; 2006 Sep; 49(18):5414-23. PubMed ID: 16942015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinic acetylcholine receptors at atomic resolution.
    Tsetlin V; Hucho F
    Curr Opin Pharmacol; 2009 Jun; 9(3):306-10. PubMed ID: 19428299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of valine 7' of TMD2 to gating of neuronal alpha3 receptor subtypes.
    Nieves-Cintrón M; Caballero-Rivera D; Navedo MF; Lasalde-Dominicci JA
    J Neurosci Res; 2006 Dec; 84(8):1778-88. PubMed ID: 17044037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase synthesis of rigid acylpolyamines using temporary N-4,4'-dimethoxytrityl protection in the presence of trityl linkers.
    Olsen CA; Witt M; Jaroszewski JW; Franzyk H
    J Org Chem; 2004 Sep; 69(18):6149-52. PubMed ID: 15373506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider and wasp neurotoxins: pharmacological and biochemical aspects.
    de O Beleboni R; Pizzo AB; Fontana AC; de O G Carolino R; Coutinho-Netto J; Dos Santos WF
    Eur J Pharmacol; 2004 Jun; 493(1-3):1-17. PubMed ID: 15189759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors.
    Tsetlin V; Utkin Y; Kasheverov I
    Biochem Pharmacol; 2009 Oct; 78(7):720-31. PubMed ID: 19501053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species selectivity of a nicotinic acetylcholine receptor agonist is conferred by two adjacent extracellular beta4 amino acids that are implicated in the coupling of binding to channel gating.
    Young GT; Broad LM; Zwart R; Astles PC; Bodkin M; Sher E; Millar NS
    Mol Pharmacol; 2007 Feb; 71(2):389-97. PubMed ID: 17065235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the structural requirements for nicotinic acetylcholine receptor activation by using tethered alkyltrimethylammonium agonists and antagonists.
    Stewart DS; Chiara DC; Cohen JB
    Biochemistry; 2006 Sep; 45(35):10641-53. PubMed ID: 16939216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of bradykinins in solitary wasp venoms.
    Konno K; Palma MS; Hitara IY; Juliano MA; Juliano L; Yasuhara T
    Toxicon; 2002 Mar; 40(3):309-12. PubMed ID: 11711128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.
    Renna JM; Strang CE; Amthor FR; Keyser KT
    Vis Neurosci; 2007; 24(4):503-11. PubMed ID: 17900376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.