These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 168927)

  • 1. Modulation of the distribution of plasma membrane intramembranous particles in contact-inhibited and transformed cells.
    Furcht LT; Scott RE
    Biochim Biophys Acta; 1975 Aug; 401(2):213-20. PubMed ID: 168927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent alterations in cell shape and intramembranous particle topography induced by cytochalasin B and colchicine in normal and transformed cells.
    Furcht LT; Scott RE; Maercklein PB
    Cancer Res; 1976 Dec; 36(12):4584-9. PubMed ID: 187328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma membrane intramembranous particle topography in 3T3 and SV3T3 cells: the effect of cytochalasin B.
    Scott RE; Maercklein PB; Furcht LT
    J Cell Sci; 1977 Feb; 23():173-92. PubMed ID: 561081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in membrane structure associated with cell contact.
    Scott RE; Furcht LT; Kersey JH
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3631-5. PubMed ID: 4357885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma membrane alteration associated with malignant transformation in culture.
    Gilula NB; Eger RR; Rifkin DB
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3594-8. PubMed ID: 171669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dithiothreitol on plasma membrane intramembranous particle topography in BALB/c 3T3 and simian virus-transformed 3T3 cells and plasma membrane vesicles.
    Scott RE; Maercklein PB
    J Natl Cancer Inst; 1980 Aug; 65(2):415-9. PubMed ID: 6249950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in membrane fluidity and structure in contact-inhibited and transformed cells.
    Barnett RE; Furcht LT; Scott RE
    Proc Natl Acad Sci U S A; 1974 May; 71(5):1992-4. PubMed ID: 4365580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of colchicine, cytochalasin B, and 2-deoxyglucose on the topographical organization of surface-bound concanavalin A in normal and transformed fibroblasts.
    Ukena TE; Borysenko JZ; Karnovsky MJ; Berlin RD
    J Cell Biol; 1974 Apr; 61(1):70-82. PubMed ID: 4132067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of vinblastine sulfate, colchicine and lumicolchicine on membrane organization of normal and transformed cells.
    Furcht LT; Scott E
    Exp Cell Res; 1975 Dec; 96(2):271-82. PubMed ID: 811487
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of local anesthetics on membrane properties. II. Enhancement of the susceptibility of mammalian cells to agglutination by plant lectins.
    Poste G; Papahadjopoulos D; Jacobson K; Vail WJ
    Biochim Biophys Acta; 1975 Jul; 394(4):520-39. PubMed ID: 167839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane particle arrays in SV40-transformed 3T3 cells.
    Montesano R; Philippeaux MM
    J Cell Sci; 1981 Feb; 47():311-30. PubMed ID: 6267087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes.
    McIntyre JA; Gilula NB; Karnovsky MJ
    J Cell Biol; 1974 Jan; 60(1):192-203. PubMed ID: 4203359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cell cycle and cell movement on the distribution of intramembranous particles in contact-inhibited and transformed cells.
    Furcht LT; Scott RE
    Exp Cell Res; 1974 Oct; 88(2):311-8. PubMed ID: 4372073
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of retinyl acetate on surface morphology and intramembrane particle distribution in the plasma membrane of 10T1/2 cells.
    Fassel TA; Bertram JS; Hui SW
    J Struct Biol; 1991 Oct; 107(2):97-105. PubMed ID: 1807353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of membrane particles and gap junctions in normal and transformed 3T3 cells studied in situ, in suspension, and treated with concanavalin A.
    Pinto Da Silva P; Martinez-Palomo A
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):572-6. PubMed ID: 164659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-fracture electron microscopy of preexisting and nascent cell membrane in cleaving eggs of Xenopus laevis.
    Bluemink JG; Tertoolen LG; Ververgaert PH; Verkleij AJ
    Biochim Biophys Acta; 1976 Aug; 443(1):143-55. PubMed ID: 953012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine.
    Pricam C; Fisher KA; Friend DS
    Anat Rec; 1977 Dec; 189(4):595-607. PubMed ID: 413458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural change of the plasma membrane induced by oncogenic viruses: quantitative studies with the freeze-fracture technique.
    Torpier G; Montagnier L; Biquard JM; Vigier P
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1695-8. PubMed ID: 169526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroplast membrane structure. Intramembranous particles of different sizes make contact in stacked membrane regions.
    Staehelin LA
    Biochim Biophys Acta; 1975 Oct; 408(1):1-11. PubMed ID: 1174577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of intramembranous particles in rapidly frozen 10T1/2 cell monolayers.
    Fassel TA; Hui SW
    J Microsc; 1988 Jan; 149(Pt 1):37-50. PubMed ID: 3373521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.