BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 168932)

  • 1. Mathematical analysis of multienzyme systems. I. Modelling of the glycolysis of human erythrocytes.
    Rapoport TA; Heinrich R
    Biosystems; 1975 Jul; 7(1):120-9. PubMed ID: 168932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical analysis of multienzyme systems. II. Steady state and transient control.
    Heinrich R; Rapoport TA
    Biosystems; 1975 Jul; 7(1):130-6. PubMed ID: 125616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes.
    Rapoport TA; Heinrich R; Rapoport SM
    Biochem J; 1976 Feb; 154(2):449-69. PubMed ID: 132930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme activities related to 2,3-P2-glycerate metabolism in embryonic and fetal red cells.
    Jelkmann W; Bauer C
    Biochem Biophys Res Commun; 1980 Mar; 93(1):93-9. PubMed ID: 6246903
    [No Abstract]   [Full Text] [Related]  

  • 5. An extended model of the glycolysis in erythrocytes.
    Rapoport TA; Otto M; Heinrich R
    Acta Biol Med Ger; 1977; 36(3-4):461-8. PubMed ID: 145774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2,3-Bisphosphoglycerate, fructose, 2,6-bisphosphate and glucose 1,6-bisphosphate during maturation of reticulocytes with low 2,3-bisphosphoglycerate content.
    Gallego C; Carreras J
    Mol Cell Biochem; 1990 Dec; 99(1):21-4. PubMed ID: 2177836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of red cell metabolism and its interaction with membrane transport.
    Heinrich R
    Prog Clin Biol Res; 1989; 319():155-73; discussion 174-7. PubMed ID: 2560196
    [No Abstract]   [Full Text] [Related]  

  • 8. [Activity of enzymes of glycolysis in pig erythrocytes in the neonatal period].
    Snïtyns'kyĭ VV; Antoniak HL; Bershads'kyĭ VI
    Ukr Biokhim Zh (1978); 1994; 66(5):31-5. PubMed ID: 7747343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cells.
    Holzhütter HG; Jacobasch G; Bisdorff A
    Eur J Biochem; 1985 May; 149(1):101-11. PubMed ID: 3996397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red cell phosphofructokinase and pyruvate kinase activities correlate with genetic variation of 2, 3-bisphosphoglycerate in rats.
    Gilman JG
    Biochem Biophys Res Commun; 1981 Sep; 102(2):766-74. PubMed ID: 6458301
    [No Abstract]   [Full Text] [Related]  

  • 11. In vivo red cell glycolytic control and DPG-ATP levels.
    Brewer GJ; Oelshlegel FJ; Moore LG; Noble NA
    Ann N Y Acad Sci; 1974 Nov; 241(0):513-23. PubMed ID: 4279579
    [No Abstract]   [Full Text] [Related]  

  • 12. High pyruvate kinase activity causes low concentration of 2,3-diphosphoglycerate in fetal rabbit red cells.
    Jelkmann W; Bauer C
    Pflugers Arch; 1978 Jul; 375(2):189-95. PubMed ID: 29278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red cells of newborn rats have low bisphosphoglyceromutase and high pyruvate kinase activities in association with low 2,3-bisphosphoglycerate.
    Gilman JG
    Biochem Biophys Res Commun; 1981 Feb; 98(4):1057-62. PubMed ID: 6261755
    [No Abstract]   [Full Text] [Related]  

  • 14. A reassessment of the phosphoglycerate bypass enzymes in human erythrocytes.
    Hass LF; Miller KB
    Biochem Biophys Res Commun; 1975 Oct; 66(3):970-9. PubMed ID: 170941
    [No Abstract]   [Full Text] [Related]  

  • 15. [Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI
    Biofizika; 1977; 22(3):483-8. PubMed ID: 142521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Anaplasma marginale on the glycolytic pathway in bovine erythrocytes.
    Mandelblum F; Ysern-Caldentey M
    Comp Biochem Physiol B; 1984; 78(4):851-4. PubMed ID: 6236033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Importance of binding of 2,3-diphosphoglycerate and ATP to hemoglobin for erythrocyte glycolysis: activation by 2,3-diphosphoglycerate of hexokinase at intracellular conditions].
    Geier T; Glende M; Reich JG
    Acta Biol Med Ger; 1978; 37(1):59-72. PubMed ID: 706929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between glucose concentration and rate of lactate production by human erythrocytes in an open perfusion system.
    Kuchel PW; Chapman BE; Lovric VA; Raftos JE; Stewart IM; Thorburn DR
    Biochim Biophys Acta; 1984 Oct; 805(2):191-203. PubMed ID: 6487659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fructose-6-phosphate,2-kinase activity in human erythrocytes.
    Fujii S; Matsuda M; Okuya S; Yoshizaki Y; Miura-Kora Y; Kaneko T
    Blood; 1987 Oct; 70(4):1211-3. PubMed ID: 2820531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes.
    Rapoport TA; Heinrich R; Jacobasch G; Rapoport S
    Eur J Biochem; 1974 Feb; 42(1):107-20. PubMed ID: 4364392
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.