These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 16893419)
1. GATA-3 regulates the transcriptional activity of tyrosine hydroxylase by interacting with CREB. Hong SJ; Huh Y; Chae H; Hong S; Lardaro T; Kim KS J Neurochem; 2006 Aug; 98(3):773-81. PubMed ID: 16893419 [TBL] [Abstract][Full Text] [Related]
2. Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Patel P; Nankova BB; LaGamma EF Brain Res Dev Brain Res; 2005 Nov; 160(1):53-62. PubMed ID: 16165221 [TBL] [Abstract][Full Text] [Related]
3. Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Lewis-Tuffin LJ; Quinn PG; Chikaraishi DM Mol Cell Neurosci; 2004 Mar; 25(3):536-47. PubMed ID: 15033181 [TBL] [Abstract][Full Text] [Related]
4. Up-regulation of tyrosine hydroxylase gene transcription by tetradecanoylphorbol acetate is mediated by the transcription factors Ets-like protein-1 (Elk-1) and Egr-1. Stefano L; Al Sarraj J; Rössler OG; Vinson C; Thiel G J Neurochem; 2006 Apr; 97(1):92-104. PubMed ID: 16515541 [TBL] [Abstract][Full Text] [Related]
5. Regulation of tyrosine hydroxylase gene expression by retinoic acid receptor. Jeong H; Kim MS; Kim SW; Kim KS; Seol W J Neurochem; 2006 Jul; 98(2):386-94. PubMed ID: 16805833 [TBL] [Abstract][Full Text] [Related]
6. Regulation of the quail tyrosine hydroxylase gene in neural crest cells by cAMP and beta-adrenergic ligands. Dupin E; Maus M; Fauquet M Dev Biol; 1993 Sep; 159(1):75-86. PubMed ID: 8103492 [TBL] [Abstract][Full Text] [Related]
7. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. DeCastro M; Nankova BB; Shah P; Patel P; Mally PV; Mishra R; La Gamma EF Brain Res Mol Brain Res; 2005 Dec; 142(1):28-38. PubMed ID: 16219387 [TBL] [Abstract][Full Text] [Related]
8. Dual transcriptional control of claudin-11 via an overlapping GATA/NF-Y motif: positive regulation through the interaction of GATA, NF-YA, and CREB and negative regulation through the interaction of Smad, HDAC1, and mSin3A. Lui WY; Wong EW; Guan Y; Lee WM J Cell Physiol; 2007 Jun; 211(3):638-48. PubMed ID: 17226765 [TBL] [Abstract][Full Text] [Related]
9. Eosinophilic inflammation: mechanisms regulating IL-5 transcription in human T lymphocytes. Wang J; Young IG Allergy; 2007 Oct; 62(10):1131-8. PubMed ID: 17845581 [TBL] [Abstract][Full Text] [Related]
10. Regulation of tyrosine hydroxylase gene transcription by the cAMP-signaling pathway: involvement of multiple transcription factors. Lim J; Yang C; Hong SJ; Kim KS Mol Cell Biochem; 2000 Sep; 212(1-2):51-60. PubMed ID: 11108136 [TBL] [Abstract][Full Text] [Related]
11. The transcription factor CREMtau and cAMP regulate promoter activity of the Na,K-ATPase alpha4 isoform. Rodova M; Nguyen AN; Blanco G Mol Reprod Dev; 2006 Nov; 73(11):1435-47. PubMed ID: 16894555 [TBL] [Abstract][Full Text] [Related]
12. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Lim KC; Lakshmanan G; Crawford SE; Gu Y; Grosveld F; Engel JD Nat Genet; 2000 Jun; 25(2):209-12. PubMed ID: 10835639 [TBL] [Abstract][Full Text] [Related]
13. Transcription factor GATA-3 regulates the transcriptional activity of dopamine beta-hydroxylase by interacting with Sp1 and AP4. Hong SJ; Choi HJ; Hong S; Huh Y; Chae H; Kim KS Neurochem Res; 2008 Sep; 33(9):1821-31. PubMed ID: 18338249 [TBL] [Abstract][Full Text] [Related]
14. Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Kim SM; Yang JW; Park MJ; Lee JK; Kim SU; Lee YS; Lee MA Biochem Biophys Res Commun; 2006 Jul; 346(2):426-35. PubMed ID: 16764822 [TBL] [Abstract][Full Text] [Related]
15. Proximal cyclic AMP response element is essential for exendin-4 induction of rat EGR-1 gene. Kang JH; Kim MJ; Jang HI; Koh KH; Yum KS; Rhie DJ; Yoon SH; Hahn SJ; Kim MS; Jo YH Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E215-22. PubMed ID: 16926376 [TBL] [Abstract][Full Text] [Related]
16. Specific GATA-binding elements in the GnRH promoter are required for gene expression pulse activity: role of GATA-4 and GATA-5 in this intermittent process. Leclerc GM; Bose SK; Boockfor FR Neuroendocrinology; 2008; 88(1):1-16. PubMed ID: 18259093 [TBL] [Abstract][Full Text] [Related]
17. Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. D'Souza A; Onem E; Patel P; La Gamma EF; Nankova BB Brain Res; 2009 Jan; 1247():1-10. PubMed ID: 18976638 [TBL] [Abstract][Full Text] [Related]
18. Molecular basis of neuroendocrine cell type-specific expression of the chromogranin B gene: Crucial role of the transcription factors CREB, AP-2, Egr-1 and Sp1. Mahapatra NR; Mahata M; Ghosh S; Gayen JR; O'Connor DT; Mahata SK J Neurochem; 2006 Oct; 99(1):119-33. PubMed ID: 16987240 [TBL] [Abstract][Full Text] [Related]
19. Cooperative interactions among intestinal GATA factors in activating the rat liver fatty acid binding protein gene. Divine JK; Staloch LJ; Haveri H; Rowley CW; Heikinheimo M; Simon TC Am J Physiol Gastrointest Liver Physiol; 2006 Aug; 291(2):G297-306. PubMed ID: 16603485 [TBL] [Abstract][Full Text] [Related]