These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 16893522)
1. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Magzoub M; Sandgren S; Lundberg P; Oglecka K; Lilja J; Wittrup A; Göran Eriksson LE; Langel U; Belting M; Gräslund A Biochem Biophys Res Commun; 2006 Sep; 348(2):379-85. PubMed ID: 16893522 [TBL] [Abstract][Full Text] [Related]
2. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein. Biverståhl H; Andersson A; Gräslund A; Mäler L Biochemistry; 2004 Nov; 43(47):14940-7. PubMed ID: 15554701 [TBL] [Abstract][Full Text] [Related]
3. Cationic TAT peptide transduction domain enters cells by macropinocytosis. Kaplan IM; Wadia JS; Dowdy SF J Control Release; 2005 Jan; 102(1):247-53. PubMed ID: 15653149 [TBL] [Abstract][Full Text] [Related]
4. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Kawamura KS; Sung M; Bolewska-Pedyczak E; Gariépy J Biochemistry; 2006 Jan; 45(4):1116-27. PubMed ID: 16430208 [TBL] [Abstract][Full Text] [Related]
5. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein. Kenward AG; Bartolotti LJ; Burns CS Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047 [TBL] [Abstract][Full Text] [Related]
6. Anterograde axonal transport of chicken cellular prion protein (PrPc) in vivo requires its N-terminal part. Butowt R; Davies P; Brown DR J Neurosci Res; 2007 Sep; 85(12):2567-79. PubMed ID: 17335074 [TBL] [Abstract][Full Text] [Related]
7. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Nakase I; Hirose H; Tanaka G; Tadokoro A; Kobayashi S; Takeuchi T; Futaki S Mol Ther; 2009 Nov; 17(11):1868-76. PubMed ID: 19707187 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448 [TBL] [Abstract][Full Text] [Related]
9. Targeting prion propagation using peptide constructs with signal sequence motifs. Söderberg KL; Guterstam P; Langel U; Gräslund A Arch Biochem Biophys; 2014 Dec; 564():254-61. PubMed ID: 25447819 [TBL] [Abstract][Full Text] [Related]
11. Photo inducible RNA interference using cell permeable protein carrier. Endoh T; Sisido M; Ohtsuki T Nucleic Acids Symp Ser (Oxf); 2007; (51):127-8. PubMed ID: 18029619 [TBL] [Abstract][Full Text] [Related]
12. Copper-dependent co-internalization of the prion protein and glypican-1. Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158 [TBL] [Abstract][Full Text] [Related]
13. Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Magzoub M; Pramanik A; Gräslund A Biochemistry; 2005 Nov; 44(45):14890-7. PubMed ID: 16274236 [TBL] [Abstract][Full Text] [Related]
14. Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins. Magzoub M; Oglecka K; Pramanik A; Göran Eriksson LE; Gräslund A Biochim Biophys Acta; 2005 Oct; 1716(2):126-36. PubMed ID: 16214105 [TBL] [Abstract][Full Text] [Related]
15. CPP-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. Räägel H; Säälik P; Hansen M; Langel U; Pooga M J Control Release; 2009 Oct; 139(2):108-17. PubMed ID: 19577599 [TBL] [Abstract][Full Text] [Related]
16. A cell-penetrating peptide derived from mammalian cell uptake protein of Mycobacterium tuberculosis. Lu S; Tager LA; Chitale S; Riley LW Anal Biochem; 2006 Jun; 353(1):7-14. PubMed ID: 16620748 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the cellular prion protein with raft-like lipid membranes. Elfrink K; Nagel-Steger L; Riesner D Biol Chem; 2007 Jan; 388(1):79-89. PubMed ID: 17214553 [TBL] [Abstract][Full Text] [Related]
18. The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein. Malaisé M; Schätzl HM; Bürkle A Free Radic Biol Med; 2008 Dec; 45(12):1622-30. PubMed ID: 18824094 [TBL] [Abstract][Full Text] [Related]
19. Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Osiecka KM; Nieznanska H; Skowronek KJ; Karolczak J; Schneider G; Nieznanski K Proteins; 2009 Nov; 77(2):279-96. PubMed ID: 19422054 [TBL] [Abstract][Full Text] [Related]
20. Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons. Gavín R; Ureña J; Rangel A; Pastrana MA; Requena JR; Soriano E; Aguzzi A; Del Río JA Neurobiol Dis; 2008 May; 30(2):243-54. PubMed ID: 18374587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]