These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16893752)

  • 1. Amino acid catabolic pathways of lactic acid bacteria.
    Fernández M; Zúñiga M
    Crit Rev Microbiol; 2006; 32(3):155-83. PubMed ID: 16893752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consequences of aspartase deficiency in Yersinia pestis.
    Dreyfus LA; Brubaker RR
    J Bacteriol; 1978 Nov; 136(2):757-64. PubMed ID: 711677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations.
    Liu SQ
    Int J Food Microbiol; 2003 Jun; 83(2):115-31. PubMed ID: 12706034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic strategies of beer spoilage lactic acid bacteria in beer.
    Geissler AJ; Behr J; von Kamp K; Vogel RF
    Int J Food Microbiol; 2016 Jan; 216():60-8. PubMed ID: 26398285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations.
    Qiao Y; Liu G; Leng C; Zhang Y; Lv X; Chen H; Sun J; Feng Z
    Sci Rep; 2018 Aug; 8(1):12441. PubMed ID: 30127376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics as a tool for studying energy metabolism in lactic acid bacteria.
    Pessione A; Lamberti C; Pessione E
    Mol Biosyst; 2010 Aug; 6(8):1419-30. PubMed ID: 20505866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetics of amino acid transport in bacteria.
    Halpern YS
    Annu Rev Genet; 1974; 8():103-33. PubMed ID: 4613254
    [No Abstract]   [Full Text] [Related]  

  • 8. The potential of lactic acid bacteria for the production of safe and wholesome food.
    Hammes WP; Tichaczek PS
    Z Lebensm Unters Forsch; 1994 Mar; 198(3):193-201. PubMed ID: 8178575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptidases and amino acid catabolism in lactic acid bacteria.
    Christensen JE; Dudley EG; Pederson JA; Steele JL
    Antonie Van Leeuwenhoek; 1999; 76(1-4):217-46. PubMed ID: 10532381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of aroma compounds in lactic fermentations.
    Smid EJ; Kleerebezem M
    Annu Rev Food Sci Technol; 2014; 5():313-26. PubMed ID: 24580073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of dairy lactic acid bacteria to metabolise amino acids via non-transaminating reactions and endogenous transamination.
    Liu SQ; Holland R; Crow VL
    Int J Food Microbiol; 2003 Sep; 86(3):257-69. PubMed ID: 12915037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free quantitative proteomic analysis reveals the lifestyle of Lactobacillus hordei in the presence of Sacchromyces cerevisiae.
    Xu D; Behr J; Geißler AJ; Bechtner J; Ludwig C; Vogel RF
    Int J Food Microbiol; 2019 Apr; 294():18-26. PubMed ID: 30711889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus.
    Terrade N; Mira de Orduña R
    Int J Food Microbiol; 2009 Jul; 133(1-2):8-13. PubMed ID: 19446351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonia production by rumen microbes in vitro.
    Henderickx HK; Demeyer DI
    Naturwissenschaften; 1967 Jul; 54(14):369-70. PubMed ID: 5626694
    [No Abstract]   [Full Text] [Related]  

  • 15. Aspartic acid inhibition of glutamic acid utilization for proline, citrulline and glutamine biosynthesis.
    RAVEL JM; REGER JL; SHIVE W
    Arch Biochem Biophys; 1955 Aug; 57(2):312-22. PubMed ID: 13259648
    [No Abstract]   [Full Text] [Related]  

  • 16. Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis.
    Spano G; Massa S
    Crit Rev Microbiol; 2006; 32(2):77-86. PubMed ID: 16809231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four
    Jang M; Jeong DW; Heo G; Kong H; Kim CT; Lee JH
    J Microbiol Biotechnol; 2021 Mar; 31(3):447-455. PubMed ID: 33526757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic acid bacterial cell factories for gamma-aminobutyric acid.
    Li H; Cao Y
    Amino Acids; 2010 Nov; 39(5):1107-16. PubMed ID: 20364279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica.
    Popp J; Noster J; Busch K; Kehl A; Zur Hellen G; Hensel M
    Infect Immun; 2015 Dec; 83(12):4466-75. PubMed ID: 26351287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids).
    Haribal M; Jander G
    J Exp Biol; 2015 Dec; 218(Pt 23):3797-806. PubMed ID: 26632455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.