These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 16893793)
1. Controlling spatio-temporal chaos in the scenario of the one-dimensional complex Ginzburg-Landau equation. Boccaletti S; Bragard J Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2383-95. PubMed ID: 16893793 [TBL] [Abstract][Full Text] [Related]
2. Introduction to anti-control of discrete chaos: theory and applications. Chen G; Shi Y Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2433-47. PubMed ID: 16893796 [TBL] [Abstract][Full Text] [Related]
3. Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Chacón R Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2335-51. PubMed ID: 16893791 [TBL] [Abstract][Full Text] [Related]
4. Delayed feedback control of chaos. Pyragas K Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2309-34. PubMed ID: 16893790 [TBL] [Abstract][Full Text] [Related]
5. Minimal control synthesis adaptive control of nonlinear systems: utilizing the properties of chaos. di Bernardo M; Stoten DP Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2397-415. PubMed ID: 16893794 [TBL] [Abstract][Full Text] [Related]
6. Control of chaos and its relevancy to spacecraft steering. Macau EE; Grebogi C Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2463-81. PubMed ID: 16893798 [TBL] [Abstract][Full Text] [Related]
7. Control of chaos in nonlinear systems with time-periodic coefficients. Sinha SC; Dávid A Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2417-32. PubMed ID: 16893795 [TBL] [Abstract][Full Text] [Related]
8. Anti-control of chaos of single time-scale brushless DC motor. Ge ZM; Chang CM; Chen YS Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2449-62. PubMed ID: 16893797 [TBL] [Abstract][Full Text] [Related]
9. Control of chaos: methods and applications in mechanics. Fradkov AL; Evans RJ; Andrievsky BR Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2279-307. PubMed ID: 16893789 [TBL] [Abstract][Full Text] [Related]
10. Coexisting chaotic and periodic dynamics in clock escapements. Moon FC; Stiefel PD Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2539-63. PubMed ID: 16893802 [TBL] [Abstract][Full Text] [Related]
11. An adaptive strategy for controlling chaotic system. Cao YJ; Hang HX J Zhejiang Univ Sci; 2003; 4(3):258-63. PubMed ID: 12765276 [TBL] [Abstract][Full Text] [Related]
12. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation. Rousseau G; Chaté H; Kapral R Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505 [TBL] [Abstract][Full Text] [Related]
13. Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems. Yanchuk S; Perlikowski P; Wolfrum M; Stefański A; Kapitaniak T Chaos; 2015 Mar; 25(3):033113. PubMed ID: 25833435 [TBL] [Abstract][Full Text] [Related]
14. Modulational instability in a purely nonlinear coupled complex Ginzburg-Landau equations through a nonlinear discrete transmission line. Ndzana F; Mohamadou A; Kofané TC Chaos; 2008 Dec; 18(4):043121. PubMed ID: 19123631 [TBL] [Abstract][Full Text] [Related]
15. A decentralized adaptive robust method for chaos control. Kobravi HR; Erfanian A Chaos; 2009 Sep; 19(3):033111. PubMed ID: 19791991 [TBL] [Abstract][Full Text] [Related]
16. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system. Wang R; Gao JY Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of the chain of forced oscillators with long-range interaction: from synchronization to chaos. Zaslavsky GM; Edelman M; Tarasov VE Chaos; 2007 Dec; 17(4):043124. PubMed ID: 18163788 [TBL] [Abstract][Full Text] [Related]
18. Optimal control and anti-control of the nonlinear dynamics of a rigid block. Lenci S; Rega G Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2353-81. PubMed ID: 16893792 [TBL] [Abstract][Full Text] [Related]
19. Phase space warping: nonlinear time-series analysis for slowly drifting systems. Chelidze D; Cusumano JP Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2495-513. PubMed ID: 16893800 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of chaos systems described by nonlinear fractional-order polytopic differential inclusion. Balochian S; Sedigh AK Chaos; 2012 Mar; 22(1):013120. PubMed ID: 22462996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]