These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16893958)

  • 1. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator.
    Zhao X; Shi H; Sevilimedu A; Liachko N; Nelson HC; Lis JT
    Nucleic Acids Res; 2006; 34(13):3755-61. PubMed ID: 16893958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An RNA aptamer that binds to the beta-catenin interaction domain of TCF-1 protein.
    Lee SK; Park MW; Yang EG; Yu J; Jeong S
    Biochem Biophys Res Commun; 2005 Feb; 327(1):294-9. PubMed ID: 15629461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic study of the features critical for designing a high avidity multivalent aptamer.
    Zhao X; Lis JT; Shi H
    Nucleic Acid Ther; 2013 Jun; 23(3):238-42. PubMed ID: 23550551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the DNA binding by the TCF-1 binding RNA aptamer.
    Park MW; Choi KH; Jeong S
    Biochem Biophys Res Commun; 2005 Apr; 330(1):11-7. PubMed ID: 15781225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA aptamers directed to discrete functional sites on a single protein structural domain.
    Shi H; Fan X; Sevilimedu A; Lis JT
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3742-6. PubMed ID: 17360423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster.
    Salamanca HH; Fuda N; Shi H; Lis JT
    Nucleic Acids Res; 2011 Aug; 39(15):6729-40. PubMed ID: 21576228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock factor-4 (HSF-4a) is a repressor of HSF-1 mediated transcription.
    Zhang Y; Frejtag W; Dai R; Mivechi NF
    J Cell Biochem; 2001; 82(4):692-703. PubMed ID: 11500947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress.
    Ahn SG; Liu PC; Klyachko K; Morimoto RI; Thiele DJ
    Genes Dev; 2001 Aug; 15(16):2134-45. PubMed ID: 11511544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection and characterization of TCF-1 binding RNA aptamers.
    Lee SY; Jeong S
    Mol Cells; 2004 Feb; 17(1):174-9. PubMed ID: 15055546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference.
    Yang S; Wang S; Liu X; Yu Y; Yue L; Wang X; Hao D
    FEBS J; 2009 Dec; 276(23):7177-86. PubMed ID: 19878300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of function in the DNA homolog of the RNA dopamine aptamer.
    Walsh R; DeRosa MC
    Biochem Biophys Res Commun; 2009 Oct; 388(4):732-5. PubMed ID: 19699181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An RNA-based transcription activator derived from an inhibitory aptamer.
    Wang S; Shepard JR; Shi H
    Nucleic Acids Res; 2010 Apr; 38(7):2378-86. PubMed ID: 20071370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The virtuoso of versatility: POU proteins that flex to fit.
    Phillips K; Luisi B
    J Mol Biol; 2000 Oct; 302(5):1023-39. PubMed ID: 11183772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and characterization of an RNA decoy for transcription factor NF-kappa B.
    Lebruska LL; Maher LJ
    Biochemistry; 1999 Mar; 38(10):3168-74. PubMed ID: 10074372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription.
    Furukawa K; Abe H; Abe N; Harada M; Tsuneda S; Ito Y
    Bioorg Med Chem Lett; 2008 Aug; 18(16):4562-5. PubMed ID: 18667307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.