These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16893975)

  • 1. Identifying cytoplasmic input to the cell wall of growing Chara corallina.
    Proseus TE; Boyer JS
    J Exp Bot; 2006; 57(12):3231-42. PubMed ID: 16893975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium pectate chemistry controls growth rate of Chara corallina.
    Proseus TE; Boyer JS
    J Exp Bot; 2006; 57(15):3989-4002. PubMed ID: 17110588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle.
    Proseus TE; Boyer JS
    Plant Cell Environ; 2008 Aug; 31(8):1147-55. PubMed ID: 18507807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tension required for pectate chemistry to control growth in Chara corallina.
    Proseus TE; Boyer JS
    J Exp Bot; 2007; 58(15-16):4283-92. PubMed ID: 18182431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle.
    Proseus TE; Boyer JS
    J Exp Bot; 2012 Jun; 63(10):3953-8. PubMed ID: 22442410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periplasm turgor pressure controls wall deposition and assembly in growing Chara corallina cells.
    Proseus TE; Boyer JS
    Ann Bot; 2006 Jul; 98(1):93-105. PubMed ID: 16720633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turgor pressure moves polysaccharides into growing cell walls of Chara corallina.
    Proseus TE; Boyer JS
    Ann Bot; 2005 May; 95(6):967-79. PubMed ID: 15760911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pectate chemistry links cell expansion to wall deposition in Chara corallina.
    Proseus TE; Boyer JS
    Plant Signal Behav; 2012 Nov; 7(11):1490-2. PubMed ID: 22918500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of stability: a new look at the physics of cell wall behavior during plant cell growth.
    Wei C; Lintilhac PM
    Plant Physiol; 2007 Nov; 145(3):763-72. PubMed ID: 17905864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina.
    Domozych DS; Sørensen I; Willats WG
    Ann Bot; 2009 Nov; 104(6):1045-56. PubMed ID: 19696037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enlargement in chara studied with a turgor clamp : growth rate is not determined by turgor.
    Zhu GL; Boyer JS
    Plant Physiol; 1992 Dec; 100(4):2071-80. PubMed ID: 16653242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separating growth from elastic deformation during cell enlargement.
    Proseus TE; Ortega JK; Boyer JS
    Plant Physiol; 1999 Feb; 119(2):775-84. PubMed ID: 9952474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Another brick in the cell wall: biosynthesis dependent growth model.
    Barbacci A; Lahaye M; Magnenet V
    PLoS One; 2013; 8(9):e74400. PubMed ID: 24066142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong alkalinization of Chara cell surface in the area of cell wall incision as an early event in mechanoperception.
    Bulychev AA; Alova AV; Bibikova TN
    Biochim Biophys Acta; 2013 Nov; 1828(11):2359-69. PubMed ID: 23850637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transduction of pressure signal to electrical signal upon sudden increase in turgor pressure in Chara corallina.
    Shimmen T; Ogata K
    J Plant Res; 2013 May; 126(3):439-46. PubMed ID: 23154838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on plant elongation and cell wall extensibility.
    Pietruszka M; Lewicka S
    Gen Physiol Biophys; 2007 Mar; 26(1):40-7. PubMed ID: 17579253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing stresses and hydration of isolated cell walls.
    Yoon Y; Pope J; Wolfe J
    Cryobiology; 2003 Jun; 46(3):271-6. PubMed ID: 12818217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cells.
    Bulychev AA; Komarova AV
    Protoplasma; 2017 Jan; 254(1):557-567. PubMed ID: 27091340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM).
    Funaki K; Nagata A; Akimoto Y; Shimada K; Ito K; Yamamoto K
    Plant Cell Physiol; 2004 Sep; 45(9):1342-5. PubMed ID: 15509860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ and phosphate releases from calcified Chara cell walls in concentrated KCl solution.
    Kiyosawa K
    J Exp Bot; 2001 Feb; 52(355):223-9. PubMed ID: 11283166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.