These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16894634)

  • 1. Salt stress effects on the central and carnitine metabolisms of Escherichia coli.
    Cánovas M; Bernal V; Sevilla A; Torroglosa T; Iborra JL
    Biotechnol Bioeng; 2007 Mar; 96(4):722-37. PubMed ID: 16894634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Link between primary and secondary metabolism in the biotransformation of trimethylammonium compounds by escherichia coli.
    Cánovas M; Bernal V; Torroglosa T; Ramirez JL; Iborra JL
    Biotechnol Bioeng; 2003 Dec; 84(6):686-99. PubMed ID: 14595781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of energetic coenzyme pools in the production of L-carnitine by Escherichia coli.
    Cánovas M; Sevilla A; Bernal V; Leal R; Iborra JL
    Metab Eng; 2006 Nov; 8(6):603-18. PubMed ID: 16904359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(-)-carnitine by resting cells of Escherichia coli.
    Cánovas M; Torroglosa T; Kleber HP; Iborra JL
    J Basic Microbiol; 2003; 43(4):259-68. PubMed ID: 12872307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in Escherichia coli.
    Bernal V; Arense P; Blatz V; Mandrand-Berthelot MA; Cánovas M; Iborra JL
    J Appl Microbiol; 2008 Jul; 105(1):42-50. PubMed ID: 18266698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redirecting metabolic fluxes through cofactor engineering: Role of CoA-esters pool during L(-)-carnitine production by Escherichia coli.
    Bernal V; Masdemont B; Arense P; Cánovas M; Iborra JL
    J Biotechnol; 2007 Oct; 132(2):110-7. PubMed ID: 17617487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the biotransformation of crotonobetaine into L-(-)-carnitine by Escherichia coli strains.
    Canovas M; Maiquez JR; Obón JM; Iborra JL
    Biotechnol Bioeng; 2002 Mar; 77(7):764-75. PubMed ID: 11835137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of D(+)-carnitine into L(-)-carnitine by resting cells of Escherichia coli O44 K74.
    Castellar MR; Cánovas M; Kleber HP; Iborra JL
    J Appl Microbiol; 1998 Nov; 85(5):883-90. PubMed ID: 9830124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the Escherichia coli response to glycerol pulse in continuous, high-cell density culture using a multivariate approach.
    Guebel DV; Cánovas M; Torres NV
    Biotechnol Bioeng; 2009 Feb; 102(3):910-22. PubMed ID: 18975303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density Escherichia coli cultures for continuous L(-)-carnitine production.
    Obón JM; Maiquez JR; Cánovas M; Kleber HP; Iborra JL
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):760-4. PubMed ID: 10422223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli.
    Elssner T; Engemann C; Baumgart K; Kleber HP
    Biochemistry; 2001 Sep; 40(37):11140-8. PubMed ID: 11551212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp.
    Engemann C; Elssner T; Kleber HP
    Arch Microbiol; 2001 May; 175(5):353-9. PubMed ID: 11409545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-carnitine metabolization and osmotic stress response in Escherichia coli.
    Jung H; Jung K; Kleber HP
    J Basic Microbiol; 1990; 30(6):409-13. PubMed ID: 2280345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling and analysis of central metabolism operating regulatory interactions in salt stress conditions in a L-carnitine overproducing E. coli strain.
    Santos G; Hormiga JA; Arense P; Cánovas M; Torres NV
    PLoS One; 2012; 7(4):e34533. PubMed ID: 22514635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Holms WH
    Biochem Soc Symp; 1987; 54():17-31. PubMed ID: 3332993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli.
    Arense P; Bernal V; Charlier D; Iborra JL; Foulquié-Moreno MR; Cánovas M
    Microb Cell Fact; 2013 May; 12():56. PubMed ID: 23718679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crotonobetaine reductase from Escherichia coli--a new inducible enzyme of anaerobic metabolization of L(-)-carnitine.
    Roth S; Jung K; Jung H; Hommel RK; Kleber HP
    Antonie Van Leeuwenhoek; 1994; 65(1):63-9. PubMed ID: 8060125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures.
    Alvarez-Vasquez F; Cánovas M; Iborra JL; Torres NV
    Biotechnol Bioeng; 2002 Dec; 80(7):794-805. PubMed ID: 12402325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional characterisation of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp.
    Engemann C; Elssner T; Pfeifer S; Krumbholz C; Maier T; Kleber HP
    Arch Microbiol; 2005 Mar; 183(3):176-89. PubMed ID: 15731894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.