BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16895)

  • 1. 31P nuclear magnetic resonance of bound substrates of arginine kinase reaction: chemical shifts in binary, ternary, quaternary, and transition state analog complexes.
    Rao BD; Cohn M
    J Biol Chem; 1977 May; 252(10):3344-50. PubMed ID: 16895
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 4. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases.
    Cohn M
    Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of nucleotide binding sites and role of metal ion in the adenylate kinase reaction by 31P NMR. Equilibria, interconversion rates, and NMR parameters of bound substrates.
    Nageswara Rao BD; Cohn M; Noda L
    J Biol Chem; 1978 Feb; 253(4):1149-58. PubMed ID: 203583
    [No Abstract]   [Full Text] [Related]  

  • 6. 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. Equilibrium constants, interconversion rates, and NMR parameters of enzyme-bound complexes.
    Nageswara Rao BD; Cohn M
    J Biol Chem; 1981 Feb; 256(4):1716-21. PubMed ID: 7462219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain.
    Shoubridge EA; Briggs RW; Radda GK
    FEBS Lett; 1982 Apr; 140(2):289-92. PubMed ID: 6282642
    [No Abstract]   [Full Text] [Related]  

  • 8. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: relaxation measurements with Mn(II) and Co(II).
    Jarori GK; Ray BD; Nageswara Rao BD
    Biochemistry; 1989 Nov; 28(24):9343-50. PubMed ID: 2558717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of human red cell glycolysis: a review.
    Rose IA
    Exp Eye Res; 1971 May; 11(3):264-72. PubMed ID: 4256448
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic and 32P nuclear magnetic resonance study of adenylate kinase-catalyzed stereospecific phosphorylation of adenosine 5'-phosphorothioate.
    Rex Sheu KF; Frey PA
    J Biol Chem; 1977 Jul; 252(13):4445-8. PubMed ID: 194882
    [No Abstract]   [Full Text] [Related]  

  • 11. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site.
    Buttlaire DH; Reed GH; Himes R
    J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of arginine and some analogues of the partial adenosine triphosphate-adenosine diphosphate exchange reaction catalysed by arginine kinase. Evolutionary divergence in the mechanism of action of a monomer and a dimer arginine kinase.
    Anosike EO; Watts DC
    Biochem J; 1976 Jun; 155(3):689-93. PubMed ID: 182135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations of substrate specificity and reaction mechanism of several kinases using chromium(III) adenosine 5'-triphosphate and chromium(III) adenosine 5'-diphosphate.
    Dunaway-Mariano D; Cleland WW
    Biochemistry; 1980 Apr; 19(7):1506-15. PubMed ID: 6248105
    [No Abstract]   [Full Text] [Related]  

  • 14. Cellular applications of 31P and 13C nuclear magnetic resonance.
    Shulman RG; Brown TR; Ugurbil K; Ogawa S; Cohen SM; den Hollander JA
    Science; 1979 Jul; 205(4402):160-6. PubMed ID: 36664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of ATPase mechanisms.
    Trentham DR; Eccleston JF; Bagshaw CR
    Q Rev Biophys; 1976 May; 9(2):217-81. PubMed ID: 183232
    [No Abstract]   [Full Text] [Related]  

  • 16. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 18. The interaction of phosphorothioate analogues of ATP with phosphomevalonate kinase. Kinetic and 31P NMR studies.
    Lee CS; O'Sullivan WJ
    J Biol Chem; 1985 Nov; 260(26):13909-15. PubMed ID: 2997186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of ATP to nucleoside-diphosphate kinase: a kinetic study.
    Lascu I; Presecan E; Proinov I
    FEBS Lett; 1986 Jul; 202(2):345-8. PubMed ID: 3013691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P NMR studies of enzyme-bound substrate complexes of yeast 3-phosphoglycerate kinase. 1. Effects of sulfate and pH. Mg(II) affinity at the two ATP sites.
    Ray BD; Rao BD
    Biochemistry; 1988 Jul; 27(15):5574-8. PubMed ID: 3052580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.