These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16895338)

  • 1. SiC nanotubes: A novel material for hydrogen storage.
    Mpourmpakis G; Froudakis GE; Lithoxoos GP; Samios J
    Nano Lett; 2006 Aug; 6(8):1581-3. PubMed ID: 16895338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes.
    Malek K; Sahimi M
    J Chem Phys; 2010 Jan; 132(1):014310. PubMed ID: 20078164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen generation from methylamine using silicon carbide nanotubes as a dehydrogenation catalyst: a density functional theory study.
    Esrafili MD; Nurazar R
    J Mol Graph Model; 2015 Feb; 55():41-7. PubMed ID: 25424658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of silicon carbide nanotubes by chemical vapor deposition.
    Xie Z; Tao D; Wang J
    J Nanosci Nanotechnol; 2007 Feb; 7(2):647-52. PubMed ID: 17450808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption behavior and electronic properties of Pdn (n ≤ 10) clusters on silicon carbide nanotubes: a first-principles study.
    Wang J; Ma L; Wang G
    J Phys Condens Matter; 2013 Feb; 25(8):085302. PubMed ID: 23364201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of chiral and achiral silicon carbide nanotubes under oxygen chemisorption.
    Ansari R; Mirnezhad M; Hosseinzadeh M
    J Mol Model; 2015 Mar; 21(3):51. PubMed ID: 25690368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study.
    Alfieri G; Kimoto T
    Nanotechnology; 2009 Jul; 20(28):285703. PubMed ID: 19550011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of DNA base-Li doped SiC nanotubes in aqueous solutions: a computer simulation study.
    Ketabi S; Hashemianzadeh SM; Moghimiwaskasi M
    J Mol Model; 2013 Apr; 19(4):1605-15. PubMed ID: 23283544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition of hydroxyapatite on SiC nanotubes in simulated body fluid.
    Taguchi T; Miyazaki T; Iikubo S; Yamaguchi K
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():29-34. PubMed ID: 24268230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of atomic oxygen-doped silicon carbide nanotubes.
    Mirzaei M; Mirzaei M
    J Mol Model; 2011 Mar; 17(3):527-31. PubMed ID: 20512515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanoscrolls: a promising material for hydrogen storage.
    Mpourmpakis G; Tylianakis E; Froudakis GE
    Nano Lett; 2007 Jul; 7(7):1893-7. PubMed ID: 17580924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane.
    Khataee A; Bayat G; Azamat J
    J Mol Graph Model; 2017 Jan; 71():176-183. PubMed ID: 27939929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen storage in nanoporous carbon materials: myth and facts.
    Kowalczyk P; Hołyst R; Terrones M; Terrones H
    Phys Chem Chem Phys; 2007 Apr; 9(15):1786-92. PubMed ID: 17415489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR and NQR parameters of the SiC-doped on the (4,4) armchair single-walled BPNT: a computational study.
    Baei MT; Sayyad-Alangi SZ; Moradi AV; Torabi P
    J Mol Model; 2012 Mar; 18(3):881-9. PubMed ID: 21625895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological properties of densely packed vertically aligned carbon nanotube film on SiC formed by surface decomposition.
    Miyake K; Kusunoki M; Usami H; Umehara N; Sasaki S
    Nano Lett; 2007 Nov; 7(11):3285-9. PubMed ID: 17929874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence.
    Wu XL; Xiong SJ; Zhu J; Wang J; Shen JC; Chu PK
    Nano Lett; 2009 Dec; 9(12):4053-60. PubMed ID: 19894694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological morphology conversion towards SnO2/SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution.
    Zhou X; Liu Y; Li X; Gao Q; Liu X; Fang Y
    Chem Commun (Camb); 2014 Feb; 50(9):1070-3. PubMed ID: 24309958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SiC-shell nanostructures fabricated by replicating ZnO nano-objects: a technique for producing hollow nanostructures of desired shape.
    Zhou J; Liu J; Yang R; Lao C; Gao P; Tummala R; Xu NS; Wang ZL
    Small; 2006 Nov; 2(11):1344-7. PubMed ID: 17192985
    [No Abstract]   [Full Text] [Related]  

  • 19. Porous nanotube network: a novel 3-D nanostructured material with enhanced hydrogen storage capacity.
    Tylianakis E; Dimitrakakis GK; Melchor S; Dobado JA; Froudakis GE
    Chem Commun (Camb); 2011 Feb; 47(8):2303-5. PubMed ID: 21152584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the growth of heteroepitaxial cubic silicon carbide layers in atmospheric-pressure H2-based plasma.
    Kakiuchi H; Ohmi H; Yasutake K
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2903-9. PubMed ID: 21776651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.