These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16895381)

  • 1. Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations.
    Padgett CW; Shenderova O; Brenner DW
    Nano Lett; 2006 Aug; 6(8):1827-31. PubMed ID: 16895381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity.
    Stewart DA; Savić I; Mingo N
    Nano Lett; 2009 Jan; 9(1):81-4. PubMed ID: 19090747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence, thermal transport, and breakdown in joule-heated GaN nanowires.
    Westover T; Jones R; Huang JY; Wang G; Lai E; Talin AA
    Nano Lett; 2009 Jan; 9(1):257-63. PubMed ID: 19090697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bucky-wires and the instability of diamond (111) surfaces in one-dimension.
    Barnard AS; Russo SP; Snook IK
    J Nanosci Nanotechnol; 2004; 4(1-2):151-6. PubMed ID: 15112559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon band structure of si nanowires: a stability analysis.
    Peelaers H; Partoens B; Peeters FM
    Nano Lett; 2009 Jan; 9(1):107-11. PubMed ID: 19053842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of atomistic coating on thermal conductivity of germanium nanowires.
    Chen J; Zhang G; Li B
    Nano Lett; 2012 Jun; 12(6):2826-32. PubMed ID: 22545778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.
    Hu M; Giapis KP; Goicochea JV; Zhang X; Poulikakos D
    Nano Lett; 2011 Feb; 11(2):618-23. PubMed ID: 21141989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable electrical properties of silicon nanowires via surface-ambient chemistry.
    Yuan GD; Zhou YB; Guo CS; Zhang WJ; Tang YB; Li YQ; Chen ZH; He ZB; Zhang XJ; Wang PF; Bello I; Zhang RQ; Lee CS; Lee ST
    ACS Nano; 2010 Jun; 4(6):3045-52. PubMed ID: 20565140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-dependent growth direction of epitaxial silicon nanowires.
    Schmidt V; Senz S; Gösele U
    Nano Lett; 2005 May; 5(5):931-5. PubMed ID: 15884897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confined phonons in Si nanowires.
    Adu KW; Gutiérrez HR; Kim UJ; Sumanasekera GU; Eklund PC
    Nano Lett; 2005 Mar; 5(3):409-14. PubMed ID: 15755085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bismuth nanowires with very low lattice thermal conductivity as revealed by the 3ω method.
    Holtzman A; Shapira E; Selzer Y
    Nanotechnology; 2012 Dec; 23(49):495711. PubMed ID: 23154308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal transport in au-core polymer-shell nanoparticles.
    Ge Z; Kang Y; Taton TA; Braun PV; Cahill DG
    Nano Lett; 2005 Mar; 5(3):531-5. PubMed ID: 15755109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
    Martin PN; Aksamija Z; Pop E; Ravaioli U
    Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Conductivity of Diamond Packed Electrospun PAN-Based Carbon Fibers Incorporated with Multi Wall Carbon Nanotubes.
    Dong Q; Lu C; Tulugan K; Jin C; Yoon SJ; Park YM; Kim TG
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1843-7. PubMed ID: 27433684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation potentials and electron-phonon coupling in silicon nanowires.
    Murphy-Armando F; Fagas G; Greer JC
    Nano Lett; 2010 Mar; 10(3):869-73. PubMed ID: 20121164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size effects on the stiffness of silica nanowires.
    Silva EC; Tong L; Yip S; Van Vliet KJ
    Small; 2006 Feb; 2(2):239-43. PubMed ID: 17193028
    [No Abstract]   [Full Text] [Related]  

  • 17. Temperature dependence of the thermal conductivity of thin silicon nanowires.
    Donadio D; Galli G
    Nano Lett; 2010 Mar; 10(3):847-51. PubMed ID: 20163124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divacancies in graphene and carbon nanotubes.
    Amorim RG; Fazzio A; Antonelli A; Novaes FD; da Silva AJ
    Nano Lett; 2007 Aug; 7(8):2459-62. PubMed ID: 17630813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity modeling of core-shell and tubular nanowires.
    Yang R; Chen G; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1111-5. PubMed ID: 15943452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.