BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16895384)

  • 1. Superoxo, peroxo, and hydroperoxo complexes formed from reactions of rhodium porphyrins with dioxygen: thermodynamics and kinetics.
    Cui W; Wayland BB
    J Am Chem Soc; 2006 Aug; 128(32):10350-1. PubMed ID: 16895384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity and equilibrium thermodynamic studies of rhodium tetrakis(3,5-disulfonatomesityl)porphyrin species with H2, CO, and olefins in water.
    Fu X; Li S; Wayland BB
    Inorg Chem; 2006 Nov; 45(24):9884-9. PubMed ID: 17112286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Rh-OCH3 and Rh-CH2OH bond dissociation energetics from methanol C-H and O-H bond reactions with rhodium(II) porphyrins.
    Sarkar S; Li S; Wayland BB
    J Am Chem Soc; 2010 Oct; 132(39):13569-71. PubMed ID: 20831223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselectivity and equilibrium thermodynamics for addition of Rh-OH to olefins in water.
    Fu X; Li S; Wayland BB
    J Am Chem Soc; 2006 Jul; 128(27):8947-54. PubMed ID: 16819891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tridentate copper ligand influences on heme-peroxo-copper formation and properties: reduced, superoxo, and mu-peroxo iron/copper complexes.
    Kim E; Helton ME; Lu S; Moënne-Loccoz P; Incarvito CD; Rheingold AL; Kaderli S; Zuberbühler AD; Karlin KD
    Inorg Chem; 2005 Oct; 44(20):7014-29. PubMed ID: 16180864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous rhodium(III) hydrides and mononuclear rhodium(II) complexes.
    Bakac A
    Dalton Trans; 2006 Apr; (13):1589-96. PubMed ID: 16547532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterically demanding diporphyrin ligands and rhodium(II) porphyrin bimetalloradical complexes.
    Zhang XX; Wayland BB
    Inorg Chem; 2000 Nov; 39(23):5318-25. PubMed ID: 11154588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen- and oxygen-driven interconversion between imido-bridged dirhodium(III) and amido-bridged dirhodium(II) complexes.
    Ishiwata K; Kuwata S; Ikariya T
    J Am Chem Soc; 2009 Apr; 131(13):5001-9. PubMed ID: 19290660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium thermodynamic studies in water: reactions of dihydrogen with rhodium(III) porphyrins relevant to Rh-Rh, Rh-H, and Rh-OH bond energetics.
    Fu X; Wayland BB
    J Am Chem Soc; 2004 Mar; 126(8):2623-31. PubMed ID: 14982472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of rhodium hydride reactions with CO, aldehydes, and olefins in water: organo-rhodium porphyrin bond dissociation free energies.
    Fu X; Wayland BB
    J Am Chem Soc; 2005 Nov; 127(47):16460-7. PubMed ID: 16305232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanol as a reaction medium and reagent in substrate reactions of rhodium porphyrins.
    Li S; Sarkar S; Wayland BB
    Inorg Chem; 2009 Sep; 48(17):8550-8. PubMed ID: 19642648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron(II) complexes with amide-containing macrocycles as non-heme porphyrin analogues.
    Korendovych IV; Kryatova OP; Reiff WM; Rybak-Akimova EV
    Inorg Chem; 2007 May; 46(10):4197-211. PubMed ID: 17419619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix isolation infrared spectroscopic and theoretical study of noble gas coordinated rhodium-dioxygen complexes.
    Yang R; Gong Y; Zhou H; Zhou M
    J Phys Chem A; 2007 Jan; 111(1):64-70. PubMed ID: 17201389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of C-H / H-H bonds by rhodium(II) porphyrin bimetalloradicals.
    Cui W; Wayland BB
    J Am Chem Soc; 2004 Jul; 126(26):8266-74. PubMed ID: 15225069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetallo-radical carbon-hydrogen bond activation of methanol and methane.
    Cui W; Zhang XP; Wayland BB
    J Am Chem Soc; 2003 Apr; 125(17):4994-5. PubMed ID: 12708846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies of O2 reduction effected by group 9 bimetallic hydride complexes.
    Teets TS; Nocera DG
    J Am Chem Soc; 2011 Nov; 133(44):17796-806. PubMed ID: 21932801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-carbon bond activation of 2,2,6,6-tetramethyl-piperidine-1-oxyl by a Rh(II) metalloradical: a combined experimental and theoretical study.
    Chan KS; Li XZ; Dzik WI; de Bruin B
    J Am Chem Soc; 2008 Feb; 130(6):2051-61. PubMed ID: 18205361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dicopper and heteronuclear iron-copper peroxo complex formation: kinetics and thermodynamics.
    Zuberbühler AD
    Micron; 2004; 35(1-2):133-5. PubMed ID: 15036317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.