These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16895391)

  • 21. Radical-induced, proton-transfer-driven fragmentations in [b(5)-H]˙(+) ions derived from pentaalanyl tryptophan.
    Williams D; Lau JK; Zhao J; Mädler S; Wang Y; Saminathan IS; Hopkinson AC; Siu KW
    Phys Chem Chem Phys; 2015 Apr; 17(16):10699-707. PubMed ID: 25811808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infrared spectroscopy of fragments of protonated peptides: direct evidence for macrocyclic structures of b5 ions.
    Erlekam U; Bythell BJ; Scuderi D; Van Stipdonk M; Paizs B; Maître P
    J Am Chem Soc; 2009 Aug; 131(32):11503-8. PubMed ID: 19637928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tandem mass spectrometry of amidated peptides.
    Mouls L; Subra G; Aubagnac JL; Martinez J; Enjalbal C
    J Mass Spectrom; 2006 Nov; 41(11):1470-83. PubMed ID: 17072914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of low-energy collision-induced dissociation spectra of peptides.
    Zhang Z
    Anal Chem; 2004 Jul; 76(14):3908-22. PubMed ID: 15253624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem mass spectrometric analysis of (13)C-containing ions from a mixture of homologous peptides differing by one mass unit at a residue.
    Wada Y; Hisada M; Kaneko R; Naoki H; Matsuo T
    J Mass Spectrom; 2000 Feb; 35(2):242-50. PubMed ID: 10679987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissociation of the peptide bond in protonated peptides.
    Polce MJ; Ren D; Wesdemiotis C
    J Mass Spectrom; 2000 Dec; 35(12):1391-8. PubMed ID: 11180629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tandem mass spectrometry of kahalalides: identification of two new cyclic depsipeptides, kahalalide R and S from Elysia grandifolia.
    Tilvi S; Naik CG
    J Mass Spectrom; 2007 Jan; 42(1):70-80. PubMed ID: 17149796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tandem parallel fragmentation of peptides for mass spectrometry.
    Ramos AA; Yang H; Rosen LE; Yao X
    Anal Chem; 2006 Sep; 78(18):6391-7. PubMed ID: 16970313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge-remote fragmentation of peptides derivatized with 4-aminonaphthalenesulphonic acid.
    Lindh I; Griffiths WJ; Bergman T; Sjövall J
    Rapid Commun Mass Spectrom; 1994 Oct; 8(10):797-803. PubMed ID: 8000077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
    Bythell BJ; Suhai S; Somogyi A; Paizs B
    J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequencing of peptide-derived Amadori products by the electron capture dissociation method.
    Stefanowicz P; Kijewska M; Szewczuk Z
    J Mass Spectrom; 2009 Jul; 44(7):1047-52. PubMed ID: 19306261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving fragmentation of poorly fragmenting peptides and phosphopeptides during collision-induced dissociation by malondialdehyde modification of arginine residues.
    Leitner A; Foettinger A; Lindner W
    J Mass Spectrom; 2007 Jul; 42(7):950-9. PubMed ID: 17539043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fragmentation study of peptide acetals and aldehydes using in-source collision-induced dissociation.
    Buré C; Le Falher G; Lange C; Delmas A
    J Mass Spectrom; 2004 Jul; 39(7):817-23. PubMed ID: 15282761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-source fragmentation of peptide aldehydes and acetals: influence of peptide length and charge state.
    Buré C; Gobert W; Lelièvre D; Delmas A
    J Mass Spectrom; 2001 Oct; 36(10):1149-55. PubMed ID: 11747109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryogenic Spectroscopy and Quantum Molecular Dynamics Determine the Structure of Cyclic Intermediates Involved in Peptide Sequence Scrambling.
    Aseev O; Perez MA; Rothlisberger U; Rizzo TR
    J Phys Chem Lett; 2015 Jul; 6(13):2524-9. PubMed ID: 26266729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of diagnostic product ions from cyanobacterial cyclic peptides by the two-bond fission mechanism using ion trap liquid chromatography/multi-stage mass spectrometry.
    Mayumi T; Kato H; Kawasaki Y; Harada K
    Rapid Commun Mass Spectrom; 2007; 21(6):1025-33. PubMed ID: 17318805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptide and protein ion/ion reactions in electrodynamic ion traps: tools and methods.
    McLuckey SA
    Methods Mol Biol; 2009; 492():395-412. PubMed ID: 19241047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Collision-induced dissociation (CID) of peptides and proteins.
    Wells JM; McLuckey SA
    Methods Enzymol; 2005; 402():148-85. PubMed ID: 16401509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents.
    Soderblom EJ; Bobay BG; Cavanagh J; Goshe MB
    Rapid Commun Mass Spectrom; 2007; 21(21):3395-408. PubMed ID: 17902198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.