These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 1689563)
1. Differential scanning calorimetric study of rat brain hexokinase: domain structure and stability. White TK; Kim JY; Wilson JE Arch Biochem Biophys; 1990 Feb; 276(2):510-7. PubMed ID: 1689563 [TBL] [Abstract][Full Text] [Related]
2. Effect of ligand binding on the tryptic digestion pattern of rat brain hexokinase: relationship of ligand-induced conformational changes to catalytic and regulatory functions. Smith AD; Wilson JE Arch Biochem Biophys; 1991 Nov; 291(1):59-68. PubMed ID: 1929435 [TBL] [Abstract][Full Text] [Related]
3. Proteolytic dissection of rat brain hexokinase: determination of the cleavage pattern during limited digestion with trypsin. Polakis PG; Wilson JE Arch Biochem Biophys; 1984 Nov; 234(2):341-52. PubMed ID: 6208845 [TBL] [Abstract][Full Text] [Related]
4. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate. White TK; Wilson JE Arch Biochem Biophys; 1990 Feb; 277(1):26-34. PubMed ID: 2306121 [TBL] [Abstract][Full Text] [Related]
5. Effect of ligand-induced conformational changes on the reactivity of specific sulfhydryl residues in rat brain hexokinase. Hutny J; Wilson JE Arch Biochem Biophys; 1990 Nov; 283(1):173-83. PubMed ID: 2241169 [TBL] [Abstract][Full Text] [Related]
6. Monoclonal antibodies against rat brain hexokinase. Utilization in epitope mapping studies and establishment of structure-function relationships. Wilson JE; Smith AD J Biol Chem; 1985 Oct; 260(23):12838-43. PubMed ID: 2413034 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half. White TK; Wilson JE Arch Biochem Biophys; 1989 Nov; 274(2):375-93. PubMed ID: 2802617 [TBL] [Abstract][Full Text] [Related]
8. Epitopic regions recognized by monoclonal antibodies against rat brain hexokinase: association with catalytic and regulatory function. Smith AD; Wilson JE Arch Biochem Biophys; 1992 Jan; 292(1):165-78. PubMed ID: 1370131 [TBL] [Abstract][Full Text] [Related]
9. Linked thermal and solute perturbation analysis of cooperative domain interactions in proteins. Structural stability of diphtheria toxin. Ramsay G; Freire E Biochemistry; 1990 Sep; 29(37):8677-83. PubMed ID: 2271548 [TBL] [Abstract][Full Text] [Related]
10. Disposition of mitochondrially bound hexokinase at the membrane surface, deduced from reactivity with monoclonal antibodies recognizing epitopes of defined location. Smith AD; Wilson JE Arch Biochem Biophys; 1991 Jun; 287(2):359-66. PubMed ID: 1716867 [TBL] [Abstract][Full Text] [Related]
11. Rat brain hexokinase: location of the substrate nucleotide binding site in a structural domain at the C-terminus of the enzyme. Nemat-Gorgani M; Wilson JE Arch Biochem Biophys; 1986 Nov; 251(1):97-103. PubMed ID: 3789748 [TBL] [Abstract][Full Text] [Related]
12. Domain structure and interactions of the type I and type II modules in the gelatin-binding region of fibronectin. All six modules are independently folded. Litvinovich SV; Strickland DK; Medved LV; Ingham KC J Mol Biol; 1991 Feb; 217(3):563-75. PubMed ID: 1994038 [TBL] [Abstract][Full Text] [Related]
13. Calorimetric dissection of thermal unfolding of OspA, a predominantly beta-sheet protein containing a single-layer beta-sheet. Nakagawa T; Shimizu H; Link K; Koide A; Koide S; Tamura A J Mol Biol; 2002 Nov; 323(4):751-62. PubMed ID: 12419262 [TBL] [Abstract][Full Text] [Related]
14. An intact hydrophobic N-terminal sequence is critical for binding of rat brain hexokinase to mitochondria. Polakis PG; Wilson JE Arch Biochem Biophys; 1985 Jan; 236(1):328-37. PubMed ID: 2578271 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK. Montgomery D; Jordan R; McMacken R; Freire E J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181 [TBL] [Abstract][Full Text] [Related]
16. Rat brain hexokinase: location of the substrate hexose binding site in a structural domain at the C-terminus of the enzyme. Schirch DM; Wilson JE Arch Biochem Biophys; 1987 May; 254(2):385-96. PubMed ID: 3579310 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of the binding of D-glucose to yeast hexokinase. Takahashi K; Casey JL; Sturtevant JM Biochemistry; 1981 Aug; 20(16):4693-7. PubMed ID: 7028093 [TBL] [Abstract][Full Text] [Related]
18. Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2. Lopez-Lacomba JL; Guzman M; Cortijo M; Mateo PL; Aguirre R; Harvey SC; Cheung HC Biopolymers; 1989 Dec; 28(12):2143-59. PubMed ID: 2690963 [TBL] [Abstract][Full Text] [Related]
19. Hexokinase A from mammalian brain: comparative peptide mapping and immunological studies with monoclonal antibodies. Ureta T; Smith AD; Wilson JE Arch Biochem Biophys; 1986 Apr; 246(1):419-27. PubMed ID: 3963828 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the two-state behavior of the thermal unfolding serum retinol binding protein containing a single retinol ligand. Muccio DD; Waterhous DV; Fish F; Brouillette CG Biochemistry; 1992 Jun; 31(24):5560-7. PubMed ID: 1610801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]