BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 16895725)

  • 41. Absorbed fraction of radon progeny in human bronchial airways with bifurcation geometry.
    Nikezic D; Novakovic B; Yu KN
    Int J Radiat Biol; 2003 Mar; 79(3):175-80. PubMed ID: 12745882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human bronchiolar deposition and retention of 6-, 8- and 10-micrograms particles.
    Camner P; Anderson M; Philipson K; Bailey A; Hashish A; Jarvis N; Bailey M; Svartengren M
    Exp Lung Res; 1997; 23(6):517-35. PubMed ID: 9358234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of guinea pig tracheobronchial transport rates using a compartmental model.
    Velasquez DJ; Morrow PE
    Exp Lung Res; 1984; 7(3-4):163-76. PubMed ID: 6525986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retention of particles inhaled in boli with and without induced bronchoconstriction.
    Scheuch G; Philipson K; Falk R; Anderson M; Svartengren M; Stahlhofen W; Camner P
    Exp Lung Res; 1995; 21(6):901-16. PubMed ID: 8591793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toxicity in the dog of inhaled 90 Y in fused clay particles: distribution, retention kinetics, and dosimetry.
    Barnes JE; McClellan RO; Hobbs CH; Kanapilly GM
    Radiat Res; 1972 Feb; 49(2):416-29. PubMed ID: 4621653
    [No Abstract]   [Full Text] [Related]  

  • 46. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge--an ex vivo and in silico approach.
    Kirch J; Guenther M; Doshi N; Schaefer UF; Schneider M; Mitragotri S; Lehr CM
    J Control Release; 2012 Apr; 159(1):128-34. PubMed ID: 22226774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simple pulmonary retention model accounting for dissolution and macrophage-mediated removal of deposited polydisperse particles.
    Koch W; Stöber W
    Inhal Toxicol; 2001 Feb; 13(2):129-48. PubMed ID: 11153065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interspecies comparisons of particle deposition and mucociliary clearance in tracheobronchial airways.
    Lippmann M; Schlesinger RB
    J Toxicol Environ Health; 1984; 13(2-3):441-69. PubMed ID: 6376822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deposition, retention, and clearance of inhaled particles.
    Lippmann M; Yeates DB; Albert RE
    Br J Ind Med; 1980 Nov; 37(4):337-62. PubMed ID: 7004477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental and numerical smoke carcinogen deposition in a multi-generation human replica tracheobronchial model.
    Robinson RJ; Oldham MJ; Clinkenbeard RE; Rai P
    Ann Biomed Eng; 2006 Mar; 34(3):373-83. PubMed ID: 16456639
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dosimetry implications of upper tracheobronchial airway anatomy in two mouse varieties.
    Oldham MJ; Phalen RF
    Anat Rec; 2002 Sep; 268(1):59-65. PubMed ID: 12209565
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of the tracheobronchial circulation in aerosol clearance.
    Wagner EM
    J Aerosol Med; 1995; 8(1):1-5. PubMed ID: 10150488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dry deposition of pollutant and marker particles onto live mouse airway surfaces enhances monitoring of individual particle mucociliary transit behaviour.
    Donnelley M; Morgan KS; Siu KK; Parsons DW
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):551-8. PubMed ID: 22713889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clearance of refractory ceramic fibers (RCF) from the rat lung: development of a model.
    Yu CP; Zhang L; Oberdörster G; Mast RW; Glass LR; Utell MJ
    Environ Res; 1994 May; 65(2):243-53. PubMed ID: 8187740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human deposition and clearance of 6-micron particles inhaled with an extremely low flow rate.
    Anderson M; Philipson K; Svartengren M; Camner P
    Exp Lung Res; 1995; 21(1):187-95. PubMed ID: 7729377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A computer model for the simulation of fiber-cell interaction in the alveolar region of the respiratory tract.
    Sturm R
    Comput Biol Med; 2011 Jul; 41(7):565-73. PubMed ID: 21632043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A computer program for the simulation of fiber deposition in the human respiratory tract.
    Sturm R; Hofmann W
    Comput Biol Med; 2006 Nov; 36(11):1252-67. PubMed ID: 16212953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Pneumological diagnostics by means of models aerosols. IV. Clearance of aerosol particles from the pulmonary alveoli. Foundations and first clinical results].
    Möller W; Kohlhäufl M; Häussinger K; Heyder J
    Pneumologie; 2002 Aug; 56(8):503-10. PubMed ID: 12174336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dust particle size effects on absorbed fraction values in the anterior nose.
    Moussa HM
    Health Phys; 2007 Oct; 93(4):307-11. PubMed ID: 17846527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. USTUR whole body case 0262: 33-y follow-up of PuO2 in a skin wound and associated axillary node.
    James AC; Sasser LB; Stuit DB; Wood TG; Glover SE; Lynch TP; Dagle GE
    Radiat Prot Dosimetry; 2007; 127(1-4):114-9. PubMed ID: 18227076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.