These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 16895725)

  • 81. Simulation and minimisation of the airway deposition of airborne bacteria.
    Balásházy I; Horváth A; Sárkány Z; Farkas A; Hofmann W
    Inhal Toxicol; 2009 Oct; 21(12):1021-9. PubMed ID: 19772481
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Probability of bystander effect induced by alpha-particles emitted by radon progeny using the analytical model of tracheobronchial tree.
    Jovanović B; Nikezić D
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):168-73. PubMed ID: 20956282
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effect of orally administered orciprenaline on tracheobronchial mucociliary clearance.
    Yeates DB; Spektor DM; Pitt BR
    Eur J Respir Dis; 1986 Aug; 69(2):100-8. PubMed ID: 3758238
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Particle clearance in the alveolar-interstitial region of the human lungs: model validation.
    Gregoratto D; Bailey MR; Marsh JW
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):353-6. PubMed ID: 21036808
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Quantification of particle deposition in asymmetrical tracheobronchial model geometry.
    Farkas A; Balásházy I
    Comput Biol Med; 2008 Apr; 38(4):508-18. PubMed ID: 18336809
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Dissolution rate and biokinetic model of zirconium tritide particles in rat lungs.
    Zhou Y; Cheng YS; Wang Y
    Health Phys; 2010 May; 98(5):672-82. PubMed ID: 20386197
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Prediction of monitoring data for 239Pu accidentally injected via wound site based on the proposed NCRP wound model.
    Ishigure N
    Radiat Prot Dosimetry; 2007; 127(1-4):108-13. PubMed ID: 17561522
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Simulation of the uptake of a reactive gas in a rat respiratory tract model with an asymmetric tracheobronchial region patterned on complete conducting airway cast data.
    Overton JH; Graham RC
    Comput Biomed Res; 1995 Jun; 28(3):171-90. PubMed ID: 7554854
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Pathways and quantification of insoluble particles in the lung compartments of the rat.
    Trosić I; Matausić-Pisl M; Hors N
    Int J Hyg Environ Health; 2000 Mar; 203(1):39-43. PubMed ID: 10956588
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Supramicron-sized particle clearance from alveoli: route and kinetics.
    Langenback EG; Bergofsky EH; Halpern JG; Foster WM
    J Appl Physiol (1985); 1990 Oct; 69(4):1302-8. PubMed ID: 2262447
    [TBL] [Abstract][Full Text] [Related]  

  • 91. [The significance of disorders of tracheobronchial clearance in the development and course of chronic nonspecific lung diseases].
    Belova GV; Dvoretskiĭ LI; Zaĭtseva TI
    Klin Med (Mosk); 1990 Oct; 68(10):9-13. PubMed ID: 2077295
    [No Abstract]   [Full Text] [Related]  

  • 92. Translocation of particles to the tracheobronchial lymph nodes after lung deposition: kinetics and particle-cell relationships.
    Lehnert BE; Valdez YE; Stewart CC
    Exp Lung Res; 1986; 10(3):245-66. PubMed ID: 3698927
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Kinetics of particle retention in the human respiratory tract.
    Gradoń L; Podgórski A
    Ann Occup Hyg; 1991 Jun; 35(3):249-59. PubMed ID: 1888098
    [TBL] [Abstract][Full Text] [Related]  

  • 94. CYP1A1/1B1 and CYP2A6/2A13 activity is conserved in cultures of differentiated primary human tracheobronchial epithelial cells.
    Newland N; Baxter A; Hewitt K; Minet E
    Toxicol In Vitro; 2011 Jun; 25(4):922-9. PubMed ID: 21376804
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Use of a labeled aerosol in the evaluation of the role of mucociliary transport and coughing in tracheobronchial clearance].
    Mossberg B
    Ann Anesthesiol Fr; 1980; 21(6):667-70. PubMed ID: 6111275
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Influence of particle size and material properties on mucociliary clearance from the airways.
    Henning A; Schneider M; Nafee N; Muijs L; Rytting E; Wang X; Kissel T; Grafahrend D; Klee D; Lehr CM
    J Aerosol Med Pulm Drug Deliv; 2010 Aug; 23(4):233-41. PubMed ID: 20500091
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Update on macrophage clearance of inhaled micro- and nanoparticles.
    Geiser M
    J Aerosol Med Pulm Drug Deliv; 2010 Aug; 23(4):207-17. PubMed ID: 20109124
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Visualizing particle/flow structure interactions in the small bronchial tubes.
    Soni B; Thompson D; Machiraju R
    IEEE Trans Vis Comput Graph; 2008; 14(6):1412-9. PubMed ID: 18988991
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Long-term clearance from small airways decreases with age.
    Svartengren M; Falk R; Philipson K
    Eur Respir J; 2005 Oct; 26(4):609-15. PubMed ID: 16204590
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Growth of the ferret tracheobronchial tree.
    Oldham MJ; Phalen RF; Huxtable RF
    Lab Anim Sci; 1990 Mar; 40(2):186-91. PubMed ID: 2157101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.