These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16895846)

  • 21. Measuring the water retention capacities (MRC) of different microcrystalline cellulose grades.
    Tomer G; Patel H; Podczeck F; Newton JM
    Eur J Pharm Sci; 2001 Jan; 12(3):321-5. PubMed ID: 11113651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microcrystalline cellulose-water interaction--a novel approach using thermoporosimetry.
    Luukkonen P; Maloney T; Rantanen J; Paulapuro H; Yliruusi J
    Pharm Res; 2001 Nov; 18(11):1562-9. PubMed ID: 11758764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microcrystalline cellulose and its microstructure in pharmaceutical processing.
    Westermarck S; Juppo AM; Kervinen L; Yliruusi J
    Eur J Pharm Biopharm; 1999 Nov; 48(3):199-206. PubMed ID: 10612030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose.
    De Figueiredo LP; Ferreira FF
    J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer.
    Luukkonen P; Schaefer T; Hellén L; Juppo AM; Yliruusi J
    Int J Pharm; 1999 Oct; 188(2):181-92. PubMed ID: 10518674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose.
    Newton JM; Bazzigialuppi M; Podczeck F; Booth S; Clarke A
    Eur J Pharm Sci; 2005 Oct; 26(2):176-83. PubMed ID: 16046106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roller compaction of moist pharmaceutical powders.
    Wu CY; Hung WL; Miguélez-Morán AM; Gururajan B; Seville JP
    Int J Pharm; 2010 May; 391(1-2):90-7. PubMed ID: 20176096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Denatured Whey Protein Powder as a New Matrix Excipient: Design and Evaluation of Mucoadhesive Tablets for Sustained Drug Release Applications.
    Hsein H; Garrait G; Tamani F; Beyssac E; Hoffart V
    Pharm Res; 2017 Feb; 34(2):365-377. PubMed ID: 28004316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of MCC II fraction and storage conditions on pellet properties.
    Krueger C; Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1039-45. PubMed ID: 23872176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel zein-based dry coating tablet design for zero-order release.
    Guo HX; Shi YP
    Int J Pharm; 2009 Mar; 370(1-2):81-6. PubMed ID: 19100825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microparticle surface layering through dry coating: impact of moisture content and process parameters on the properties of orally disintegrating tablets.
    Alyami H; Koner J; Dahmash EZ; Bowen J; Terry D; Mohammed AR
    J Pharm Pharmacol; 2017 Jul; 69(7):807-822. PubMed ID: 27696423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of wax on compaction of microcrystalline cellulose beads made by extrusion and spheronization.
    Iloañusi NO; Schwartz JB
    Drug Dev Ind Pharm; 1998 Jan; 24(1):37-44. PubMed ID: 15605595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of the effects of the physical characteristics of microcrystalline cellulose on performance in extrusion spheronization.
    Heng PW; Koo OM
    Pharm Res; 2001 Apr; 18(4):480-7. PubMed ID: 11451035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of formulation and excipient variables on the pellet properties prepared by extrusion spheronization.
    Sinha VR; Agrawal MK; Kumria R
    Curr Drug Deliv; 2005 Jan; 2(1):1-8. PubMed ID: 16305403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Influence of excipients on moisture absorption and dispersibility of Shuanghuanglian microcapsules].
    Liu Y; Xu DS; Feng Y; Shen L
    Zhong Yao Cai; 2007 Apr; 30(4):458-60. PubMed ID: 17674802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of cellulose powder structure on moisture-induced degradation of acetylsalicylic acid.
    Mihranyan A; Strømme M; Ek R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):220-5. PubMed ID: 16311024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrodynamic investigations of conduction processes in humid microcrystalline cellulose tablets.
    Nilsson M; Strømme M
    J Phys Chem B; 2005 Mar; 109(12):5450-5. PubMed ID: 16851580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder.
    Mascia S; Seiler C; Fitzpatrick S; Wilson DI
    Int J Pharm; 2010 Apr; 389(1-2):1-9. PubMed ID: 20123008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier.
    Uesu NY; Pineda EA; Hechenleitner AA
    Int J Pharm; 2000 Sep; 206(1-2):85-96. PubMed ID: 11058813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.