BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16895848)

  • 41. Particle size and loading efficiency of poly(D,L-lactic-co-glycolic acid) multiphase microspheres containing water soluble substances prepared by the hydrous and anhydrous solvent evaporation methods.
    Iwata M; Nakamura Y; McGinity JW
    J Microencapsul; 1999; 16(1):49-58. PubMed ID: 9972502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three levels face centered central composite design of colon targeted micro-particulates system of celecoxib: screening of formulations variables and in vivo studies.
    Nandy BC; Verma V; Dey S; Mazumder B
    Curr Drug Deliv; 2014; 11(5):621-35. PubMed ID: 24844925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formulation and process parameters affecting protein encapsulation into PLGA microspheres during ethyl acetate-based microencapsulation process.
    Cho M; Sah H
    J Microencapsul; 2005 Feb; 22(1):1-12. PubMed ID: 16019886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles.
    Srinivasan C; Katare YK; Muthukumaran T; Panda AK
    J Microencapsul; 2005 Mar; 22(2):127-38. PubMed ID: 16019899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.
    Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W
    Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodegradable progesterone microsphere delivery system for osteoporosis therapy.
    Yang Q; Owusu-Ababio G
    Drug Dev Ind Pharm; 2000 Jan; 26(1):61-70. PubMed ID: 10677811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Submicronparticles from biodegradable polymers.
    Jobmann M; Rafler G
    Int J Pharm; 2002 Aug; 242(1-2):213-7. PubMed ID: 12176249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres.
    Cleland JL; Jones AJ
    Pharm Res; 1996 Oct; 13(10):1464-75. PubMed ID: 8899836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism.
    Kim HK; Park TG
    Biotechnol Bioeng; 1999 Dec; 65(6):659-67. PubMed ID: 10550772
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ammonolysis-based microencapsulation technique using isopropyl formate as dispersed solvent.
    Im HY; Sah H
    Int J Pharm; 2009 Dec; 382(1-2):130-8. PubMed ID: 19715744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response surface methodology for optimization and characterization of limonene-based coenzyme Q10 self-nanoemulsified capsule dosage form.
    Palamakula A; Nutan MT; Khan MA
    AAPS PharmSciTech; 2004 Apr; 5(4):e66. PubMed ID: 15760063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PLGA microspheres with high drug loading and high encapsulation efficiency prepared by a novel solvent evaporation technique.
    Bao W; Zhou J; Luo J; Wu D
    J Microencapsul; 2006 Aug; 23(5):471-9. PubMed ID: 16980270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response surface methodology for the development of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate.
    Taha EI; Samy AM; Kassem AA; Khan MA
    Pharm Dev Technol; 2005; 10(3):363-70. PubMed ID: 16176016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Encapsulation of plasmid DNA in PLGA-stearylamine microspheres: a comparison of solvent evaporation and spray-drying methods.
    Atuah KN; Walter E; Merkle HP; Alpar HO
    J Microencapsul; 2003; 20(3):387-99. PubMed ID: 12881118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment.
    Pagar KP; Vavia PR
    Pharm Dev Technol; 2014 Jun; 19(4):385-94. PubMed ID: 23590187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres.
    Fu X; Ping Q; Gao Y
    J Microencapsul; 2005 Nov; 22(7):705-14. PubMed ID: 16421082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethyl acetate as a dispersing solvent in the production of poly(DL-lactide-co-glycolide) microspheres: effect of process parameters and polymer type.
    Soppimath KS; Aminabhavi TM
    J Microencapsul; 2002; 19(3):281-92. PubMed ID: 12022494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stabilization and encapsulation of a staphylokinase variant (K35R) into poly(lactic-co-glycolic acid) microspheres.
    He JT; Su HB; Li GP; Tao XM; Mo W; Song HY
    Int J Pharm; 2006 Feb; 309(1-2):101-8. PubMed ID: 16413979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design, fabrication, optimization and characterization of memantine-loaded biodegradable PLGA nanoscaffolds for treatment of Alzheimer's disease.
    Rani V; Chawla R
    Biomed Mater; 2022 Nov; 17(6):. PubMed ID: 36202081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.