These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16895996)

  • 1. Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry.
    Savalli N; Kondratiev A; Toro L; Olcese R
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12619-24. PubMed ID: 16895996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore-quencher pairing.
    Pantazis A; Olcese R
    J Gen Physiol; 2012 Aug; 140(2):207-18. PubMed ID: 22802360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating and ionic currents reveal how the BKCa channel's Ca2+ sensitivity is enhanced by its beta1 subunit.
    Bao L; Cox DH
    J Gen Physiol; 2005 Oct; 126(4):393-412. PubMed ID: 16186565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modes of operation of the BKCa channel beta2 subunit.
    Savalli N; Kondratiev A; de Quintana SB; Toro L; Olcese R
    J Gen Physiol; 2007 Jul; 130(1):117-31. PubMed ID: 17591990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains.
    Yang H; Shi J; Zhang G; Yang J; Delaloye K; Cui J
    Nat Struct Mol Biol; 2008 Nov; 15(11):1152-9. PubMed ID: 18931675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for the S0 transmembrane segment in voltage-dependent gating of BK channels.
    Koval OM; Fan Y; Rothberg BS
    J Gen Physiol; 2007 Mar; 129(3):209-20. PubMed ID: 17296928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel.
    Pantazis A; Kohanteb AP; Olcese R
    J Gen Physiol; 2010 Dec; 136(6):645-57. PubMed ID: 21078868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional validation of Ca
    Kshatri AS; Gonzalez-Hernandez AJ; Giraldez T
    Biochim Biophys Acta Biomembr; 2018 Apr; 1860(4):943-952. PubMed ID: 28966112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary γ subunits.
    Li Q; Fan F; Kwak HR; Yan J
    J Gen Physiol; 2015 Jun; 145(6):543-54. PubMed ID: 26009545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of Ca
    Geng Y; Deng Z; Zhang G; Budelli G; Butler A; Yuan P; Cui J; Salkoff L; Magleby KL
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14512-14521. PubMed ID: 32513714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor.
    Miranda P; Holmgren M; Giraldez T
    Elife; 2018 Dec; 7():. PubMed ID: 30526860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slo3 K+ channels: voltage and pH dependence of macroscopic currents.
    Zhang X; Zeng X; Lingle CJ
    J Gen Physiol; 2006 Sep; 128(3):317-36. PubMed ID: 16940555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Participation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance (BK) K+ channels.
    Hu L; Shi J; Ma Z; Krishnamoorthy G; Sieling F; Zhang G; Horrigan FT; Cui J
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10488-93. PubMed ID: 12925732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic relationship between the voltage sensor and the activation gate in spHCN channels.
    Bruening-Wright A; Elinder F; Larsson HP
    J Gen Physiol; 2007 Jul; 130(1):71-81. PubMed ID: 17591986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of pharmacological activation of BK channels.
    Gessner G; Cui YM; Otani Y; Ohwada T; Soom M; Hoshi T; Heinemann SH
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3552-7. PubMed ID: 22331907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra- and intersubunit cooperativity in activation of BK channels by Ca2+.
    Qian X; Niu X; Magleby KL
    J Gen Physiol; 2006 Oct; 128(4):389-404. PubMed ID: 17001085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BK channel inhibition by strong extracellular acidification.
    Zhou Y; Xia XM; Lingle CJ
    Elife; 2018 Jul; 7():. PubMed ID: 29963986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits.
    Liu HW; Hou PP; Guo XY; Zhao ZW; Hu B; Li X; Wang LY; Ding JP; Wang S
    J Biol Chem; 2014 Jun; 289(24):16914-23. PubMed ID: 24764303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of RCK domains to human BK channel allosteric activation.
    Savalli N; Pantazis A; Yusifov T; Sigg D; Olcese R
    J Biol Chem; 2012 Jun; 287(26):21741-50. PubMed ID: 22556415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.