BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16896179)

  • 1. Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis.
    Curthoys NP; Taylor L; Hoffert JD; Knepper MA
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F140-7. PubMed ID: 16896179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+ cells.
    Schroeder JM; Liu W; Curthoys NP
    Am J Physiol Renal Physiol; 2003 Aug; 285(2):F258-65. PubMed ID: 12684230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mitochondrial glutaminase in rat renal glutamine metabolism.
    Curthoys NP
    J Nutr; 2001 Sep; 131(9 Suppl):2491S-5S; discussion 2496S-7S. PubMed ID: 11533299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in mRNAs for enzymes of glutamine metabolism in kidney and liver during ammonium chloride acidosis.
    Schoolwerth AC; deBoer PA; Moorman AF; Lamers WH
    Am J Physiol; 1994 Sep; 267(3 Pt 2):F400-6. PubMed ID: 7916534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of a pure suspension of rat proximal tubules.
    Vinay P; Gougoux A; Lemieux G
    Am J Physiol; 1981 Oct; 241(4):F403-11. PubMed ID: 6119031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.
    Schauer KL; Freund DM; Prenni JE; Curthoys NP
    Am J Physiol Renal Physiol; 2013 Sep; 305(5):F628-40. PubMed ID: 23804448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney.
    Busque SM; Wagner CA
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F440-50. PubMed ID: 19458124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of AUF1 and HuR in the pH-responsive stabilization of phosphoenolpyruvate carboxykinase mRNA in LLC-PK₁-F⁺ cells.
    Mufti J; Hajarnis S; Shepardson K; Gummadi L; Taylor L; Curthoys NP
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1066-77. PubMed ID: 21795643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic profiling of the effect of metabolic acidosis on the apical membrane of the proximal convoluted tubule.
    Walmsley SJ; Freund DM; Curthoys NP
    Am J Physiol Renal Physiol; 2012 Jun; 302(11):F1465-77. PubMed ID: 22357915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis.
    Freund DM; Prenni JE; Curthoys NP
    Am J Physiol Renal Physiol; 2013 Jan; 304(2):F145-55. PubMed ID: 23136003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pH and bicarbonate on phosphoenolpyruvate carboxykinase and glutaminase mRNA levels in cultured renal epithelial cells.
    Kaiser S; Curthoys NP
    J Biol Chem; 1991 May; 266(15):9397-402. PubMed ID: 1851745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent binding and modifications of AUF1 and HuR mediate the pH-responsive stabilization of phosphoenolpyruvate carboxykinase mRNA in kidney cells.
    Gummadi L; Taylor L; Curthoys NP
    Am J Physiol Renal Physiol; 2012 Dec; 303(11):F1545-54. PubMed ID: 23019227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rebound metabolic alkalosis in the rat. A study of the renal response to and recovery from metabolic acidosis.
    Guern C; Vinay P; Pichette C; Lemieux G; Gougoux A
    Contrib Nephrol; 1982; 31():140-53. PubMed ID: 7105747
    [No Abstract]   [Full Text] [Related]  

  • 14. PEPCK mRNA localization in proximal tubule and gene regulation during metabolic acidosis.
    Drewnowsk KD; Craig MR; Digiovanni SR; McCarty JM; Moorman AF; Lamers WH; Schoolwerth AC
    J Physiol Pharmacol; 2002 Mar; 53(1):3-20. PubMed ID: 11939717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation of ammoniagenic enzyme adaptation in rat S1 proximal tubules and ammonium excretion response.
    DiGiovanni SR; Madsen KM; Luther AD; Knepper MA
    Am J Physiol; 1994 Sep; 267(3 Pt 2):F407-14. PubMed ID: 8092254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated recovery from metabolic acidosis.
    Brosnan JT; Parry DM
    Contrib Nephrol; 1982; 31():135-9. PubMed ID: 6286248
    [No Abstract]   [Full Text] [Related]  

  • 17. Differential expression and acid-base regulation of glutaminase mRNAs in gluconeogenic LLC-PK(1)-FBPase(+) cells.
    Gstraunthaler G; Holcomb T; Feifel E; Liu W; Spitaler N; Curthoys NP
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F227-37. PubMed ID: 10662727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal metabolite concentrations and the activities of glutaminase and glutamate dehydrogenase during recovery from metabolic acidosis in the rat.
    Parry DM; Hall B; Brosnan JT
    Can J Biochem; 1981; 59(11-12):871-6. PubMed ID: 7332866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and hormonal control of serine dehydratase during metabolic acidosis differ markedly from those of phosphoenolpyruvate carboxykinase in rat kidney.
    Masuda T; Ogawa H; Matsushima T; Kawamata S; Sasahara M; Kuroda K; Suzuki Y; Takata Y; Yamazaki M; Takusagawa F; Pitot HC
    Int J Biochem Cell Biol; 2003 Aug; 35(8):1234-47. PubMed ID: 12757760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of altered renal glutaminase gene expression in response to chronic acidosis.
    Hwang JJ; Perera S; Shapiro RA; Curthoys NP
    Biochemistry; 1991 Jul; 30(30):7522-6. PubMed ID: 1854751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.