BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16896216)

  • 1. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae.
    Kikuma T; Ohneda M; Arioka M; Kitamoto K
    Eukaryot Cell; 2006 Aug; 5(8):1328-36. PubMed ID: 16896216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy during conidiation and conidial germination in filamentous fungi.
    Kikuma T; Arioka M; Kitamoto K
    Autophagy; 2007; 3(2):128-9. PubMed ID: 17183223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes.
    Kikuma T; Kitamoto K
    FEMS Microbiol Lett; 2011 Mar; 316(1):61-9. PubMed ID: 21204928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of Aoatg1 and detection of the Cvt pathway in Aspergillus oryzae.
    Yanagisawa S; Kikuma T; Kitamoto K
    FEMS Microbiol Lett; 2013 Jan; 338(2):168-76. PubMed ID: 23136971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of bovine chymosin by autophagy deficiency in the filamentous fungus Aspergillus oryzae.
    Yoon J; Kikuma T; Maruyama J; Kitamoto K
    PLoS One; 2013; 8(4):e62512. PubMed ID: 23658635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae.
    Kikuma T; Tadokoro T; Maruyama JI; Kitamoto K
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):384-395. PubMed ID: 27696999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AeiA is a novel autophagy-related protein that promotes peroxisome degradation by pexophagy in Aspergillus oryzae.
    Nishio J; Takahashi Y; Kasahara M; Takeda Y; Kikuma T
    FEBS Lett; 2023 Mar; 597(5):608-617. PubMed ID: 36700830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localization of acyl-CoA binding protein in Aspergillus oryzae is regulated by autophagy machinery.
    Kawaguchi K; Kikuma T; Higuchi Y; Takegawa K; Kitamoto K
    Biochem Biophys Res Commun; 2016 Nov; 480(1):8-12. PubMed ID: 27725156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum.
    Li H; Hu P; Wang Y; Pan Y; Liu G
    Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae.
    Shoji JY; Arioka M; Kitamoto K
    Eukaryot Cell; 2006 Feb; 5(2):411-21. PubMed ID: 16467481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylcholine levels regulate hyphal elongation and differentiation in the filamentous fungus Aspergillus oryzae.
    Suzawa T; Iwama R; Fukuda R; Horiuchi H
    Sci Rep; 2024 May; 14(1):11729. PubMed ID: 38778216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae.
    Shoji JY; Kikuma T; Arioka M; Kitamoto K
    PLoS One; 2010 Dec; 5(12):e15650. PubMed ID: 21187926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae.
    Lu JP; Liu XH; Feng XX; Min H; Lin FC
    Curr Genet; 2009 Aug; 55(4):461-73. PubMed ID: 19629489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of Aspergillus oryzae vacuolar protein sorting mutants.
    Ohneda M; Arioka M; Kitamoto K
    Appl Environ Microbiol; 2005 Aug; 71(8):4856-61. PubMed ID: 16085884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of AoAtg11 in selective autophagy in the filamentous fungus Aspergillus oryzae.
    Tadokoro T; Kikuma T; Kitamoto K
    Fungal Biol; 2015 Jul; 119(7):560-7. PubMed ID: 26058532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Basic-Region Helix-Loop-Helix Transcription Factor DevR Significantly Affects Polysaccharide Metabolism in Aspergillus oryzae.
    Zhuang M; Zhang ZM; Jin L; Wang BT; Koyama Y; Jin FJ
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30737353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vacuolar glucoamylase, Sga1, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae.
    Deng YZ; Naqvi NI
    Autophagy; 2010 May; 6(4):455-61. PubMed ID: 20383057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of rns4/vps32 mutation in the RNase T1 expression-sensitive strain of Saccharomyces cerevisiae: Evidence for altered ambient response resulting in transportation of the secretory protein to vacuoles.
    Unno K; Juvvadi PR; Nakajima H; Shirahige K; Kitamoto K
    FEMS Yeast Res; 2005 Jun; 5(9):801-12. PubMed ID: 15925308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aovps24, a homologue of VPS24, is required for vacuolar formation which could maintain proper growth and development in the filamentous fungus Aspergillus oryzae.
    Tatsumi A; Kikuma T; Arioka M; Kitamoto K
    Biochem Biophys Res Commun; 2006 Sep; 347(4):970-8. PubMed ID: 16857172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy.
    Hagiwara D; Takahashi H; Kusuya Y; Kawamoto S; Kamei K; Gonoi T
    BMC Genomics; 2016 May; 17():358. PubMed ID: 27185182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.