These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16896248)

  • 21. OH production from the photolysis of isoprene-derived peroxy radicals: cross-sections, quantum yields and atmospheric implications.
    Hansen RF; Lewis TR; Graham L; Whalley LK; Seakins PW; Heard DE; Blitz MA
    Phys Chem Chem Phys; 2017 Jan; 19(3):2332-2345. PubMed ID: 28054688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atmospheric peroxy radical measurements using dual-channel chemical amplification cavity ringdown spectroscopy.
    Liu Y; Zhang J
    Anal Chem; 2014 Jun; 86(11):5391-8. PubMed ID: 24798952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals.
    Berndt T; Richters S; Kaethner R; Voigtländer J; Stratmann F; Sipilä M; Kulmala M; Herrmann H
    J Phys Chem A; 2015 Oct; 119(41):10336-48. PubMed ID: 26392132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.
    Alam MS; Rickard AR; Camredon M; Wyche KP; Carr T; Hornsby KE; Monks PS; Bloss WJ
    J Phys Chem A; 2013 Nov; 117(47):12468-83. PubMed ID: 24171583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols.
    Simmie JM; Curran HJ
    J Phys Chem A; 2009 Jul; 113(27):7834-45. PubMed ID: 19518123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photodissociation dynamics of the simplest alkyl peroxy radicals, CH
    Sullivan EN; Nichols B; Neumark DM
    J Chem Phys; 2018 Jan; 148(4):044309. PubMed ID: 29390832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Red-Light-Induced Decomposition of an Organic Peroxy Radical: A New Source of the HO2 Radical.
    Kumar M; Francisco JS
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15711-4. PubMed ID: 26555823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photolysis of CH₃CHO at 248 nm: evidence of triple fragmentation from primary quantum yield of CH₃ and HCO radicals and H atoms.
    Morajkar P; Bossolasco A; Schoemaecker C; Fittschen C
    J Chem Phys; 2014 Jun; 140(21):214308. PubMed ID: 24908009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical amplification--cavity attenuated phase shift spectroscopy measurements of atmospheric peroxy radicals.
    Wood EC; Charest JR
    Anal Chem; 2014 Oct; 86(20):10266-73. PubMed ID: 25260158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atmospheric fate of methyl vinyl ketone: peroxy radical reactions with NO and HO2.
    Praske E; Crounse JD; Bates KH; Kurtén T; Kjaergaard HG; Wennberg PO
    J Phys Chem A; 2015 May; 119(19):4562-72. PubMed ID: 25486386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accretion Product Formation from Self- and Cross-Reactions of RO
    Berndt T; Scholz W; Mentler B; Fischer L; Herrmann H; Kulmala M; Hansel A
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3820-3824. PubMed ID: 29390173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A temperature-dependent relative-rate study of the OH initiated oxidation of n-butane: the kinetics of the reactions of the 1- and 2-butoxy radicals.
    Cassanelli P; Johnson D; Anthony Cox R
    Phys Chem Chem Phys; 2005 Nov; 7(21):3702-10. PubMed ID: 16358017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry.
    Zhao Y; Thornton JA; Pye HOT
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12142-12147. PubMed ID: 30413618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO
    Goldman MJ; Green WH; Kroll JH
    J Phys Chem A; 2021 Dec; 125(48):10303-10314. PubMed ID: 34843244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The reaction of organic peroxy radicals with unsaturated compounds controlled by a non-epoxide pathway under atmospheric conditions.
    Nozière B; Durif O; Dubus E; Kylington S; Emmer Å; Fache F; Piel F; Wisthaler A
    Phys Chem Chem Phys; 2023 Mar; 25(11):7772-7782. PubMed ID: 36857663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum Chemical Study of Autoignition of Methyl Butanoate.
    Jiao Y; Zhang F; Dibble TS
    J Phys Chem A; 2015 Jul; 119(28):7282-92. PubMed ID: 25760925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature Dependence Study of the Kinetics and Product Yields of the HO
    Hui AO; Fradet M; Okumura M; Sander SP
    J Phys Chem A; 2019 May; 123(17):3655-3671. PubMed ID: 30942073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactions of organic peroxy radicals, RO
    Nozière B; Fache F
    Chem Sci; 2021 Sep; 12(35):11676-11683. PubMed ID: 34659702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature and Pressure Studies of the Reactions of CH3O2, HO2, and 1,2-C4H9O2 with NO2.
    McKee K; Blitz MA; Pilling MJ
    J Phys Chem A; 2016 Mar; 120(9):1408-20. PubMed ID: 26397023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.
    Yan C; Kocevska S; Krasnoperov LN
    J Phys Chem A; 2016 Aug; 120(31):6111-21. PubMed ID: 27397742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.