BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1689673)

  • 21. Effect of oxygen free radicals on Mg2+ efflux from erythrocytes.
    Günther T; Vormann J; Förster RM
    Eur J Clin Chem Clin Biochem; 1994 Apr; 32(4):273-7. PubMed ID: 8038268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of Na+/Mg2+ antiport in rat erythrocytes by intracellular Cl-.
    Ebel H; Günther T
    FEBS Lett; 2003 May; 543(1-3):103-7. PubMed ID: 12753914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Mg(2+) efflux from rat erythrocytes non-loaded with Mg(2+).
    Ebel H; Günther T
    Biochim Biophys Acta; 1999 Oct; 1421(2):353-60. PubMed ID: 10518705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased Na+/Mg2+ antiport in erythrocytes of patients with cystic fibrosis.
    Vormann J; Magdorf K; Günther T; Wahn U
    Eur J Clin Chem Clin Biochem; 1994 Nov; 32(11):833-6. PubMed ID: 7888479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of intracellular magnesium by Mg2+ efflux.
    Güther T; Vormann J; Förster R
    Biochem Biophys Res Commun; 1984 Feb; 119(1):124-31. PubMed ID: 6422934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.
    Günzel D; Schlue WR
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):595-608. PubMed ID: 8815196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells.
    Lüdi H; Schatzmann HJ
    J Physiol; 1987 Sep; 390():367-82. PubMed ID: 3443939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of manganese transport in rabbit erythroid cells.
    Chua AC; Stonell LM; Savigni DL; Morgan EH
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):99-112. PubMed ID: 8735697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of Na+/Mg2+ antiport in thymocytes by cAMP.
    Günther T; Vormann J
    FEBS Lett; 1992 Feb; 297(1-2):132-4. PubMed ID: 1312946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Na+-stimulated Mg2+-transport system in human red blood cells.
    Féray JC; Garay R
    Biochim Biophys Acta; 1986 Mar; 856(1):76-84. PubMed ID: 3955035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells.
    Xu W; Willis JS
    J Membr Biol; 1994 Sep; 141(3):277-87. PubMed ID: 7807526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Na(+)-dependent Mg2+ efflux from Mg(2+)-loaded rat thymocytes and HL 60 cells.
    Günther T; Vormann J
    Magnes Trace Elem; 1990; 9(5):279-82. PubMed ID: 2130826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of external magnesium on intracellular free sodium: Na+ flux via Na+/Mg2+ antiport is masked by other Na+ transport systems in rat cardiac myocytes.
    Odblom MP; Handy RD
    Magnes Res; 2001 Mar; 14(1-2):3-9. PubMed ID: 11300619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of magnesium fluxes in rat erythrocytes using a stable isotope of magnesium.
    Chanson A; Feillet-Coudray C; Gueux E; Coudray C; Rambeau M; Mazur A; Wolf FI; Rayssiguier Y
    Front Biosci; 2005 May; 10():1720-6. PubMed ID: 15769661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Na(+)- and anion-dependent Mg2+ influx in isolated hepatocytes.
    Günther T; Höllriegl V
    Biochim Biophys Acta; 1993 Jun; 1149(1):49-54. PubMed ID: 8391320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Kinetic characteristics of 22Na transport in human and rat erythrocytes during cytoplasm acidification and cell compression].
    Orlov SN; Pokudin NI; Riazhskiĭ GG
    Biokhimiia; 1988 Apr; 53(4):637-42. PubMed ID: 2456100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of adrenalectomy upon rat erythrocyte Na+ and K+ content, Na+ efflux rate and Mg2+- and (Na+ plus K+)-Mg2+-ATPase activities.
    Radcliffe MA
    Biochim Biophys Acta; 1974 Mar; 339(3):303-10. PubMed ID: 4276128
    [No Abstract]   [Full Text] [Related]  

  • 39. Insulin modulation of Na/H antiport in rat red blood cells.
    Rizvi SI; Incerpi S; Luly P
    Indian J Biochem Biophys; 1994 Apr; 31(2):127-30. PubMed ID: 7927433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnesium metabolism in erythrocytes of patients with chronic renal failure and after renal transplantation.
    Vormann J; Günther T; Perras B; Rob PM
    Eur J Clin Chem Clin Biochem; 1994 Dec; 32(12):901-4. PubMed ID: 7696437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.