These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1689673)

  • 41. Na+/Mg2+ antiport in non-erythrocyte vertebrate cells.
    Günther T
    Magnes Res; 2007 Jun; 20(2):89-99. PubMed ID: 18062583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes.
    Miseta A; Bogner P; Berényi E; Kellermayer M; Galambos C; Wheatley DN; Cameron IL
    Biochim Biophys Acta; 1993 Jan; 1175(2):133-9. PubMed ID: 8418892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Escherichia coli DNA polymerases II and III: activation by magnesium or by manganous ions.
    Helfman WB; Hendler SS; Smith DW
    Biochim Biophys Acta; 1976 Oct; 447(2):175-87. PubMed ID: 788784
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of Mg2+ transport in brush border membrane vesicles of rabbit ileum studied with mag-fura-2.
    Jüttner R; Ebel H
    Biochim Biophys Acta; 1998 Mar; 1370(1):51-63. PubMed ID: 9518549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of Na+-K+-2Cl- cotransport by protein phosphorylation in ferret erythrocytes.
    Flatman PW; Creanor J
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):699-708. PubMed ID: 10358111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron transport mechanisms in reticulocytes and mature erythrocytes.
    Hodgson LL; Quail EA; Morgan EH
    J Cell Physiol; 1995 Feb; 162(2):181-90. PubMed ID: 7822429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sodium-calcium exchange mechanism in vascular smooth muscle tissue as revealed by manipulating external magnesium.
    Altura BT; Zhang AM; Altura BM
    Magnes Trace Elem; 1990; 9(3):163-75. PubMed ID: 2123389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport.
    Grinstein S; Cohen S; Rothstein A
    J Gen Physiol; 1984 Mar; 83(3):341-69. PubMed ID: 6325586
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ATP requirement of the sodium-dependent magnesium extrusion from human red blood cells.
    Frenkel EJ; Graziani M; Schatzmann HJ
    J Physiol; 1989 Jul; 414():385-97. PubMed ID: 2607436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Loading rat heart myocytes with Mg2+ using low-[Na+] solutions.
    Almulla HA; Bush PG; Steele MG; Ellis D; Flatman PW
    J Physiol; 2006 Sep; 575(Pt 2):443-54. PubMed ID: 16793904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Na(+)-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils.
    DeCoursey TE; Cherny VV
    J Gen Physiol; 1994 May; 103(5):755-85. PubMed ID: 8035162
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.
    Tashiro M; Tursun P; Konishi M
    Biophys J; 2005 Nov; 89(5):3235-47. PubMed ID: 16085772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of amiloride stimulation of Mg2+ uptake in immortalized mouse distal convoluted tubule cells.
    Dai LJ; Raymond L; Friedman PA; Quamme GA
    Am J Physiol; 1997 Feb; 272(2 Pt 2):F249-56. PubMed ID: 9124403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of anions on the Na(+)-H+ exchange of trout red blood cells.
    Guizouarn H; Scheuring U; Borgese F; Motais R; Garcia-Romeu F
    J Physiol; 1990 Sep; 428():79-94. PubMed ID: 2172527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutathione transport across intestinal brush-border membranes: effects of ions, pH, delta psi, and inhibitors.
    Vincenzini MT; Iantomasi T; Favilli F
    Biochim Biophys Acta; 1989 Dec; 987(1):29-37. PubMed ID: 2597684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of monovalent ions on the activity of the (Ca2+ + Mg2+)-ATPase and Ca2+ -transport of human red blood cells.
    Wierichs R; Bader H
    Biochim Biophys Acta; 1980 Feb; 596(2):325-8. PubMed ID: 6101964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of the divalent cations Mg2+ and Mn2+ on adenylate cyclase activity in white and brown adipose tissue of lean and obese (ob/ob) mice.
    Bégin-Heick N
    Can J Biochem Cell Biol; 1985 Jan; 63(1):7-15. PubMed ID: 3986664
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction of sodium and potassium ions with Na+,K+-ATPase. II. General properties of ouabain-sensitive K+ binding.
    Homareda H; Matsui H
    J Biochem; 1982 Jul; 92(1):219-31. PubMed ID: 6288672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.