These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1689673)

  • 61. The Na+/H+ antiport in renal mitochondria.
    Sastrasinh M; Young P; Cragoe EJ; Sastrasinh S
    Am J Physiol; 1995 May; 268(5 Pt 1):C1227-34. PubMed ID: 7762616
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.
    Stout AK; Li-Smerin Y; Johnson JW; Reynolds IJ
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):641-57. PubMed ID: 8734978
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activation of sodium transport in rat erythrocytes by inhibition of protein phosphatases 1 and 2A.
    Ivanova TI; Agalakova NI; Gusev GP
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):60-7. PubMed ID: 16875859
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Kinetic properties of the K+/H+ antiport of heart mitochondria.
    Brierley GP; Jung DW
    Biochemistry; 1990 Jan; 29(2):408-15. PubMed ID: 2105743
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase.
    Crow VL; Pritchard GG
    Biochim Biophys Acta; 1977 Mar; 481(1):105-14. PubMed ID: 14688
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Action of trichlormethiazide and amiloride on cellular Na+, K+ and Mg+ concentrations].
    Kisters K; Zidek W; Rahn KH
    Schweiz Med Wochenschr; 1989 Dec; 119(50):1837-9. PubMed ID: 2609140
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sodium pump and Na+/H+ antiport restoration in erythrocytes from cancer patients in remission.
    Kovacic HN; Gallice PM; Nicoara AE; Mordoff RI; Favre RG; Crevat AD
    Oncol Res; 1998; 10(6):333-9. PubMed ID: 9848104
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sodium-dependent recovery of ionised magnesium concentration following magnesium load in rat heart myocytes.
    Almulla HA; Bush PG; Steele MG; Flatman PW; Ellis D
    Pflugers Arch; 2006 Feb; 451(5):657-67. PubMed ID: 16133259
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polarized distribution of Na(+)-H+ antiport activity in rat alveolar epithelial cells.
    Lubman RL; Crandall ED
    Am J Physiol; 1994 Feb; 266(2 Pt 1):L138-47. PubMed ID: 8141309
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A gated pathway for electrophoretic Na+ fluxes in rat liver mitochondria. Regulation by surface Mg2+.
    Bernardi P; Angrilli A; Azzone GF
    Eur J Biochem; 1990 Feb; 188(1):91-7. PubMed ID: 2156695
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver.
    Cefaratti C; Romani A; Scarpa A
    Am J Physiol; 1998 Oct; 275(4):C995-C1008. PubMed ID: 9755053
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The control of red cell magnesium.
    Flatman PW
    Magnes Res; 1988 Jul; 1(1-2):5-11. PubMed ID: 3079202
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bicarbonate/chloride antiport in Vero cells: I. Evidence for both sodium-linked and sodium-independent exchange.
    Tønnessen TI; Ludt J; Sandvig K; Olsnes S
    J Cell Physiol; 1987 Aug; 132(2):183-91. PubMed ID: 3624314
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulation of 22Na+ transport by calcium in an established kidney epithelial cell line.
    Taub M; Saier MH
    J Biol Chem; 1979 Nov; 254(22):11440-4. PubMed ID: 387772
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aging of the erythrocyte. III. Cation content.
    Bartosz G; Swierczyński B; Gondko R
    Experientia; 1981 Jul; 37(7):723-4. PubMed ID: 7274381
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of vacuolar ion pool in Saccharomyces carlsbergensis: potassium efflux from vacuoles is coupled with manganese or magnesium influx.
    Lichko LP; Okorokov LA; Kulaev IS
    J Bacteriol; 1980 Nov; 144(2):666-71. PubMed ID: 7430067
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sodium and potassium exchange in chicken erythrocytes.
    HUNTER FR; CHALFIN D; FINAMORE FJ; SWEETLAND ML
    J Cell Comp Physiol; 1956 Feb; 47(1):37-54. PubMed ID: 13306730
    [No Abstract]   [Full Text] [Related]  

  • 79. Cation transport in erythrocytes treated with lecithinase A.
    GREIG ME; GIBBONS AJ
    Arch Biochem Biophys; 1956 Apr; 61(2):343-7. PubMed ID: 13314616
    [No Abstract]   [Full Text] [Related]  

  • 80. Role of donor/recipient Na+/H+ antiport activity as a nonimmunologic predictor of kidney graft outcome.
    Matteucci E; Carmellini M; Bertoni C; Boldrini E; Cosi C; Mosca F; Giampietro O
    Transplant Proc; 1997 Dec; 29(8):3600-1. PubMed ID: 9414854
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.