These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16896767)

  • 1. Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest.
    Richter DD; Allen HL; Li J; Markewitz D; Raikes J
    Oecologia; 2006 Nov; 150(2):259-71. PubMed ID: 16896767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-decade responses of soil trace elements to an aggrading old-field forest: B, Mn, Zn, Cu, and Fe.
    Li J; Richter DD; Mendoza A; Heine P
    Ecology; 2008 Oct; 89(10):2911-23. PubMed ID: 18959328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development.
    Billings SA; Richter DD
    Oecologia; 2006 Jun; 148(2):325-33. PubMed ID: 16465541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions.
    De Schrijver A; Vesterdal L; Hansen K; De Frenne P; Augusto L; Achat DL; Staelens J; Baeten L; De Keersmaeker L; De Neve S; Verheyen K
    Oecologia; 2012 May; 169(1):221-34. PubMed ID: 22120703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].
    Cai QY; Zhang XZ; Li TX; Chen GD
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3207-14. PubMed ID: 25898618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure.
    Johnson AH; Frizano J; Vann DR
    Oecologia; 2003 May; 135(4):487-99. PubMed ID: 12695899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil Phosphorus Pools, Bioavailability and Environmental Risk in Response to the Phosphorus Supply in the Red Soil of Southern China.
    Yan X; Yang W; Chen X; Wang M; Wang W; Ye D; Wu L
    Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33050443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ecosystem management on microbial community level physiological profiles of postmining forest rehabilitation.
    Cookson WR; O'Donnell AJ; Grant CD; Grierson PF; Murphy DV
    Microb Ecol; 2008 Feb; 55(2):321-32. PubMed ID: 17899248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of soil acidification on the growth of Korean pine (Pinus koraiensis) seedlings in a granite-derived forest soil.
    Choi DS; Jin HO; Lee CH; Kim YC; Kayama M
    Environ Sci; 2005; 12(1):33-47. PubMed ID: 15793559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.
    Ali MA; Louche J; Legname E; Duchemin M; Plassard C
    Tree Physiol; 2009 Dec; 29(12):1587-97. PubMed ID: 19840995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A significant carbon sink in temperate forests in Beijing: based on 20-year field measurements in three stands.
    Zhu J; Hu X; Yao H; Liu G; Ji C; Fang J
    Sci China Life Sci; 2015 Nov; 58(11):1135-41. PubMed ID: 26501378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest.
    Zhang H; Shi L; Lu H; Shao Y; Liu S; Fu S
    Sci Total Environ; 2020 Aug; 732():139295. PubMed ID: 32438146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems?
    Selmants PC; Hart SC
    Ecology; 2010 Feb; 91(2):474-84. PubMed ID: 20392012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.
    Nöjd P; Lindroos AJ; Smolander A; Derome J; Lumme I; Helmisaari HS
    Sci Total Environ; 2009 May; 407(10):3365-71. PubMed ID: 19269680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poultry litter application to loblolly pine forests: growth and nutrient containment.
    Friend AL; Roberts SD; Schoenholtz SH; Mobley JA; Gerard PD
    J Environ Qual; 2006; 35(3):837-48. PubMed ID: 16585627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic fertilization leads to increased peach root production and lifespan.
    Baldi E; Toselli M; Eissenstat DM; Marangoni B
    Tree Physiol; 2010 Nov; 30(11):1373-82. PubMed ID: 20921024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols.
    Louche J; Ali MA; Cloutier-Hurteau B; Sauvage FX; Quiquampoix H; Plassard C
    FEMS Microbiol Ecol; 2010 Aug; 73(2):323-35. PubMed ID: 20533944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.
    Matson AL; Corre MD; Veldkamp E
    Glob Chang Biol; 2014 Dec; 20(12):3802-13. PubMed ID: 24965673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils.
    Chiu CY; Wang CJ; Huang CC
    J Environ Radioact; 2008 Jun; 99(6):882-9. PubMed ID: 18164109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.