These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 16896795)

  • 1. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi.
    Pérez-Martín J; Castillo-Lluva S; Sgarlata C; Flor-Parra I; Mielnichuk N; Torreblanca J; Carbó N
    Mol Genet Genomics; 2006 Sep; 276(3):211-29. PubMed ID: 16896795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
    Sgarlata C; Pérez-Martín J
    J Cell Sci; 2005 Aug; 118(Pt 16):3607-22. PubMed ID: 16046476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of morphogenesis and pathogenic development of Ustilago maydis.
    Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE
    Adv Genet; 2007; 57():1-47. PubMed ID: 17352901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.
    Baeza-Montañez L; Gold SE; Espeso EA; García-Pedrajas MD
    Mol Plant Microbe Interact; 2015 Jan; 28(1):86-102. PubMed ID: 25208341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.
    Castanheira S; Pérez-Martín J
    Plant Signal Behav; 2015; 10(4):e1001227. PubMed ID: 25876077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ustilago maydis: how its biology relates to pathogenic development.
    Kahmann R; Kämper J
    New Phytol; 2004 Oct; 164(1):31-42. PubMed ID: 33873482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis.
    Elías-Villalobos A; Barrales RR; Ibeas JI
    Fungal Genet Biol; 2019 Aug; 129():52-64. PubMed ID: 30980908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions.
    Matei A; Doehlemann G
    Curr Opin Microbiol; 2016 Dec; 34():60-66. PubMed ID: 27504540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis.
    Fernández-Alvarez A; Elías-Villalobos A; Ibeas JI
    Fungal Genet Biol; 2010 Sep; 47(9):727-35. PubMed ID: 20554055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.
    García-Pedrajas MD; Baeza-Montañez L; Gold SE
    Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ustilago maydis effectors and their impact on virulence.
    Lanver D; Tollot M; Schweizer G; Lo Presti L; Reissmann S; Ma LS; Schuster M; Tanaka S; Liang L; Ludwig N; Kahmann R
    Nat Rev Microbiol; 2017 Jul; 15(7):409-421. PubMed ID: 28479603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.
    Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW
    Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity.
    García-Muse T; Steinberg G; Perez-Martín J
    J Cell Sci; 2004 Jan; 117(Pt 3):487-506. PubMed ID: 14679309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity.
    Basse CW; Steinberg G
    Mol Plant Pathol; 2004 Mar; 5(2):83-92. PubMed ID: 20565585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin.
    Flor-Parra I; Vranes M; Kämper J; Pérez-Martín J
    Plant Cell; 2006 Sep; 18(9):2369-87. PubMed ID: 16905655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis.
    Castillo-Lluva S; García-Muse T; Pérez-Martín J
    J Cell Sci; 2004 Aug; 117(Pt 18):4143-56. PubMed ID: 15316079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi.
    Pérez-Martín J; Bardetti P; Castanheira S; de la Torre A; Tenorio-Gómez M
    Semin Cell Dev Biol; 2016 Sep; 57():93-99. PubMed ID: 27032479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.
    Elías-Villalobos A; Fernández-Álvarez A; Moreno-Sánchez I; Helmlinger D; Ibeas JI
    PLoS Pathog; 2015 Aug; 11(8):e1005134. PubMed ID: 26317403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis--similar inputs, different outputs.
    Sánchez-Martínez C; Pérez-Martín J
    Curr Opin Microbiol; 2001 Apr; 4(2):214-21. PubMed ID: 11282479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.
    Castanheira S; Mielnichuk N; Pérez-Martín J
    Development; 2014 Dec; 141(24):4817-26. PubMed ID: 25411209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.