BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16896872)

  • 1. Morphological analysis of the proximal femur using quantitative computed tomography.
    Stiehl JB; Jacobson D; Carrera G
    Int Orthop; 2007 Jun; 31(3):287-92. PubMed ID: 16896872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function-orientated structural analysis of the proximal human femur.
    Skuban TP; Vogel T; Baur-Melnyk A; Jansson V; Heimkes B
    Cells Tissues Organs; 2009; 190(5):247-55. PubMed ID: 19321950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantitative CT assessment of the proximal femur. Experimental studies on its correlation with breaking load in femoral neck fractures].
    Buitrago-Téllez CH; Bonnaire F; Schulze C; Gufler H; Hönninger A; Kuner E; Langer M
    Rofo; 1997 Dec; 167(6):627-32. PubMed ID: 9465959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction.
    Manske SL; Liu-Ambrose T; Cooper DM; Kontulainen S; Guy P; Forster BB; McKay HA
    Osteoporos Int; 2009 Mar; 20(3):445-53. PubMed ID: 18661091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Controlled Variable Study of the Biomechanical Properties of the Proximal Femur before and after Cancellous Bone Removal.
    Wang H; Ding K; Zhang Y; Ren C; Huo H; Zhu Y; Zhang Q; Chen W
    Orthop Surg; 2024 May; 16(5):1215-1229. PubMed ID: 38520122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Transmission of force to the trabecular structures of the proximal end of the femur].
    Elke R; Marugg S
    Orthopade; 1992 Feb; 21(1):51-6. PubMed ID: 1549338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry.
    Pulkkinen P; Jämsä T; Lochmüller EM; Kuhn V; Nieminen MT; Eckstein F
    Osteoporos Int; 2008 Apr; 19(4):547-58. PubMed ID: 17891327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture.
    Cheng X; Li J; Lu Y; Keyak J; Lang T
    Bone; 2007 Jan; 40(1):169-74. PubMed ID: 16876496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the femoral neck: A physical dissection with emphasis on the internal trabecular system.
    Hammer A
    Ann Anat; 2010 May; 192(3):168-77. PubMed ID: 20395119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-energy X-ray absorptiometry in osteonecrosis of the femoral head.
    Laroche M; Costa L; Bernard J; Puget J; Constantin A; Cantagrel A; Mazières B
    Rev Rhum Engl Ed; 1998 Jun; 65(6):393-6. PubMed ID: 9670331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calcar femorale redefined.
    Griffin JB
    Clin Orthop Relat Res; 1982 Apr; (164):211-4. PubMed ID: 7067289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased strain in the femoral neck following insertion of a resurfacing femoral prosthesis.
    Wik TS; Østbyhaug PO; Klaksvik J; Aamodt A
    J Bone Joint Surg Br; 2010 Mar; 92(3):461-7. PubMed ID: 20190322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual energy X-ray absorptiometry analysis of peri-prosthetic stress shielding in the Birmingham resurfacing hip replacement.
    Harty JA; Devitt B; Harty LC; Molloy M; McGuinness A
    Arch Orthop Trauma Surg; 2005 Dec; 125(10):693-5. PubMed ID: 16237532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hip resurfacing increases bone strains associated with short-term femoral neck fracture.
    Long JP; Santner TJ; Bartel DL
    J Orthop Res; 2009 Oct; 27(10):1319-25. PubMed ID: 19338031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults.
    Ruff CB; Scott WW; Liu AY
    Am J Phys Anthropol; 1991 Nov; 86(3):397-413. PubMed ID: 1746645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the trabecular structure in the proximal part of the femur and its mechanical relation to the epiphyseal growth cartilage.
    Nikolić V; Ruszkowski I; Vucetić A
    Acta Med Iugosl; 1970; 24(4):313-24. PubMed ID: 5517922
    [No Abstract]   [Full Text] [Related]  

  • 17. Slipped capital femoral epiphysis. The mechanical function of the periosteum: new aspects and theory including bilaterality.
    Billing L; Bogren HG; Henrikson B; Wallin J
    Acta Radiol Suppl (Stockholm); 2004 Aug; (431):1-27. PubMed ID: 15586843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized tomography of proximal femoral trabecular patterns.
    Kerr R; Resnick D; Sartoris DJ; Kursunoglu S; Pineda C; Haghighi P; Greenway G; Guerra J
    J Orthop Res; 1986; 4(1):45-56. PubMed ID: 3950808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z; Trabelsi N; Milgrom C
    J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition and microarchitecture of human trabecular bone change with age and differ between anatomical locations.
    Turunen MJ; Prantner V; Jurvelin JS; Kröger H; Isaksson H
    Bone; 2013 May; 54(1):118-25. PubMed ID: 23388419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.