These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16897016)

  • 21. Host coexistence in a model for two host-one parasitoid interactions.
    Clamer V; Pugliese A; Liessi D; Breda D
    J Math Biol; 2017 Aug; 75(2):419-441. PubMed ID: 28040876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Larval aquatic and terrestrial mites infesting parthenogenetic Ischnura hastata (Odonata: Coenagrionidae) from the Azores islands.
    Lorenzo-Carballa MO; Beatty CD; Haitlinger R; Valdecasas AG; Utzeri C; Vieira V; Cordero-Rivera A
    Exp Appl Acarol; 2011 Jul; 54(3):225-41. PubMed ID: 21380754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional ecology of immature parasitoids.
    Brodeur J; Boivin G
    Annu Rev Entomol; 2004; 49():27-49. PubMed ID: 14651455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New hosts and parasitism notes for the mite Leptus (Acari: Erythraeidae) in fragments of the Atlantic Forest, Brazil.
    Pereira AI; Fadini MA; Pikart TG; Zanuncio JC; Serrão JE
    Braz J Biol; 2012 Aug; 72(3):611-6. PubMed ID: 22990834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions.
    Hancock PA; Godfray HC
    Malar J; 2007 Jul; 6():98. PubMed ID: 17663757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parasitism of Hylodes phyllodes (Anura: Cycloramphidae) by Hannemania sp (Acari: Trombicuudae) in an area of Atlantic Forest, Ilha Grande, southeastern Brazil.
    Hatano FH; Gettinger D; Van Sluys M; Rocha CF
    Parasite; 2007 Jun; 14(2):107-12. PubMed ID: 17645181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The phenomenon of phylogenetic synhospitality in acariform mites (acari: acariformes)--the permanent parasites of vertebrates].
    Bochkov AV; Mironov SV
    Parazitologiia; 2008; 42(2):81-100. PubMed ID: 18664065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A host-parasitoid system with predation-driven component Allee effects in host population.
    Kang Y; Sasmal SK; Bhowmick AR; Chattopadhyay J
    J Biol Dyn; 2015; 9 Suppl 1():213-32. PubMed ID: 25340591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specificity of attachment sites of larval water mites (Hydrachnidia, Acari) on their insect hosts (Chironomidae, Diptera)--evidence from some stream-living species.
    Martin P
    Exp Appl Acarol; 2004; 34(1-2):95-112. PubMed ID: 15597603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consequences of symbiosis for food web dynamics.
    Kooi BW; Kuijper LD; Kooijman SA
    J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A two-agent model applied to the biological control of the sugarcane borer (Diatraea saccharalis) by the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes.
    Molnár S; López I; Gámez M; Garay J
    Biosystems; 2016 Mar; 141():45-54. PubMed ID: 26911807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predatory activity of Rhantus sikkimensis and larvae of Toxorhynchites splendens on mosquito larvae in Darjeeling, India.
    Aditya G; Ash A; Saha GK
    J Vector Borne Dis; 2006 Jun; 43(2):66-72. PubMed ID: 16967818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parasitism Risk and Infection Alter Host Dispersal.
    Baines CB; Diab S; McCauley SJ
    Am Nat; 2020 Aug; 196(2):119-131. PubMed ID: 32673087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Origin and evolution of parasitism in mites of the infraorder Eleutherengona (Acari: Prostigmata). Report II. Superfamily Cheyletoidea].
    Bochkov AV
    Parazitologiia; 2009; 43(2):97-117. PubMed ID: 19505011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards.
    González-Fernández JJ; de la Peña F; Hormaza JI; Boyero JR; Vela JM; Wong E; Trigo MM; Montserrat M
    Bull Entomol Res; 2009 Oct; 99(5):433-44. PubMed ID: 19061535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective predation, parasitism, and trophic cascades in a bluegill-Daphnia-parasite system.
    Duffy MA
    Oecologia; 2007 Aug; 153(2):453-60. PubMed ID: 17497181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal control of insects through sterile insect release and habitat modification.
    Renee Fister K; McCarthy ML; Oppenheimer SF; Collins C
    Math Biosci; 2013 Aug; 244(2):201-12. PubMed ID: 23743207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling malaria control by introduction of larvivorous fish.
    Lou Y; Zhao XQ
    Bull Math Biol; 2011 Oct; 73(10):2384-407. PubMed ID: 21347816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mites for the control of pests in protected cultivation.
    Gerson U; Weintraub PG
    Pest Manag Sci; 2007 Jul; 63(7):658-76. PubMed ID: 17533640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple coexistence equilibria in a two parasitoid-one host model.
    Pfab F; Diekmann O; Bhattacharya S; Pugliese A
    Theor Popul Biol; 2017 Feb; 113():34-46. PubMed ID: 27866981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.