These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 16897017)
1. Mathematical model of nitric oxide convection and diffusion in a renal medullary vas rectum. Zhang W; Edwards A J Math Biol; 2006 Sep; 53(3):385-420. PubMed ID: 16897017 [TBL] [Abstract][Full Text] [Related]
2. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. Fry BC; Edwards A; Layton AT Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340 [TBL] [Abstract][Full Text] [Related]
3. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. Chen J; Edwards A; Layton AT Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645 [TBL] [Abstract][Full Text] [Related]
4. Determinants of basal nitric oxide concentration in the renal medullary microcirculation. Zhang W; Pibulsonggram T; Edwards A Am J Physiol Renal Physiol; 2004 Dec; 287(6):F1189-203. PubMed ID: 15280161 [TBL] [Abstract][Full Text] [Related]
5. A model of nitric oxide tubulovascular cross talk in a renal outer medullary cross section. Zhang W; Edwards A Am J Physiol Renal Physiol; 2007 Feb; 292(2):F711-22. PubMed ID: 17032934 [TBL] [Abstract][Full Text] [Related]
6. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. Fry BC; Edwards A; Layton AT Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk. Edwards A; Layton AT Am J Physiol Renal Physiol; 2010 Sep; 299(3):F634-47. PubMed ID: 20519375 [TBL] [Abstract][Full Text] [Related]
8. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk. Mori T; O'Connor PM; Abe M; Cowley AW Hypertension; 2007 Jun; 49(6):1336-41. PubMed ID: 17470722 [TBL] [Abstract][Full Text] [Related]
9. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. Chen J; Edwards A; Layton AT Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1369-83. PubMed ID: 20335320 [TBL] [Abstract][Full Text] [Related]
10. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. Chen J; Layton AT; Edwards A Am J Physiol Renal Physiol; 2009 Aug; 297(2):F517-36. PubMed ID: 19403646 [TBL] [Abstract][Full Text] [Related]
11. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation. Edwards A; Layton AT Am J Physiol Renal Physiol; 2012 Oct; 303(7):F907-17. PubMed ID: 22791340 [TBL] [Abstract][Full Text] [Related]
12. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. Edwards A; Layton AT Am J Physiol Renal Physiol; 2010 Sep; 299(3):F616-33. PubMed ID: 20534869 [TBL] [Abstract][Full Text] [Related]
13. Loss of renal function and microvascular blood flow after suprarenal aortic clamping and reperfusion (SPACR) above the superior mesenteric artery is greatly augmented compared with SPACR above the renal arteries. Myers SI; Wang L; Myers DJ J Vasc Surg; 2007 Feb; 45(2):357-66. PubMed ID: 17264017 [TBL] [Abstract][Full Text] [Related]
14. Modeling exchange of plasma proteins between microcirculation and interstitium of the renal medulla. Wang W; Michel CC Am J Physiol Renal Physiol; 2000 Aug; 279(2):F334-44. PubMed ID: 10919854 [TBL] [Abstract][Full Text] [Related]
15. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity. Persson P; Fasching A; Teerlink T; Hansell P; Palm F Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650 [TBL] [Abstract][Full Text] [Related]
16. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow. Kim J; Pannabecker TL Am J Physiol Renal Physiol; 2010 Jul; 299(1):F273-9. PubMed ID: 20392799 [TBL] [Abstract][Full Text] [Related]
17. Transport of plasma proteins across vasa recta in the renal medulla. Zhang W; Edwards A Am J Physiol Renal Physiol; 2001 Sep; 281(3):F478-92. PubMed ID: 11502597 [TBL] [Abstract][Full Text] [Related]
18. Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. Abe M; O'Connor P; Kaldunski M; Liang M; Roman RJ; Cowley AW Am J Physiol Renal Physiol; 2006 Aug; 291(2):F350-7. PubMed ID: 16597609 [TBL] [Abstract][Full Text] [Related]
19. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. Myers SI; Wang L; Liu F; Bartula LL J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873 [TBL] [Abstract][Full Text] [Related]
20. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. Brezis M; Heyman SN; Dinour D; Epstein FH; Rosen S J Clin Invest; 1991 Aug; 88(2):390-5. PubMed ID: 1864953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]