BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16897033)

  • 1. Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase.
    Murakami K; Tsubouchi R; Fukayama M; Ogawa T; Yoshino M
    Arch Microbiol; 2006 Nov; 186(5):385-92. PubMed ID: 16897033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme inactivation by a cellular neutral protease: enzyme specificity, effects of ligands on inactivation, and implications for the regulation of enzyme degradation.
    Levy MR; McConkey CL
    J Cell Physiol; 1977 Feb; 90(2):253-63. PubMed ID: 14168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High activities of NADP+-dependent isocitrate dehydrogenase and malic enzyme in rabbit lens epithelial cells.
    Winkler BS; Solomon F
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):821-3. PubMed ID: 3366571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA
    Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADP-dependent isocitrate dehydrogenase from bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Biochem Int; 1988 Sep; 17(3):489-98. PubMed ID: 3202883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Holms WH
    Biochem Soc Symp; 1987; 54():17-31. PubMed ID: 3332993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on NADP-+-specific isocitrate dehydrogenase from an extreme thermophile, Thermus flavus AT-62.
    Saiki T; Arima K
    J Biochem; 1975 Jan; 77(1?):233-40. PubMed ID: 166075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity labeling of NADP+-specific isocitrate dehydrogenase by a new fluorescent nucleotide analogue, 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate.
    Bailey JM; Colman RF
    Biochemistry; 1985 Sep; 24(20):5367-77. PubMed ID: 4074701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803.
    Muro-Pastor MI; Florencio FJ
    Eur J Biochem; 1992 Jan; 203(1-2):99-105. PubMed ID: 1730247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of NADP+-specific isocitrate dehydrogenase from the pupa of Bombyx mori.
    Miake F; Torikata T; Koga K; Hayashi K
    J Biochem; 1977 Aug; 82(2):449-54. PubMed ID: 21170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of various amino acid residues in the functioning of NADP-specific isocitrate dehydrogenase from bovine adrenal cortex cytoplasm].
    Senkevich SB; Taranda NI; Strumilo SA; Vinogradov VV
    Ukr Biokhim Zh (1978); 1988; 60(1):46-50. PubMed ID: 3363677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence suggesting that the NADPH/NADP ratio modulates the splitting of the isocitrate flux between the glyoxylic and tricarboxylic acid cycles, in Escherichia coli.
    Bautista J; Satrústegui J; Machado A
    FEBS Lett; 1979 Sep; 105(2):333-6. PubMed ID: 39785
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of an active site peptide modified by the substrate analogue 3-bromo-2-ketoglutarate on a single chain of dimeric NADP+-dependent isocitrate dehydrogenase.
    Ehrlich RS; Colman RF
    J Biol Chem; 1987 Sep; 262(26):12614-9. PubMed ID: 3624273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+ -dependent isocitrate dehydrogenase.
    Marino D; González EM; Frendo P; Puppo A; Arrese-Igor C
    Planta; 2007 Jan; 225(2):413-21. PubMed ID: 16896792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation of highly-purified NADP(H)-dependent enzymes from the rat liver using NADP-hydrazidoadipoyl oxypropyl sepharose].
    Bondar' VS; Kuznetsov PV; Mezhevikin VV
    Prikl Biokhim Mikrobiol; 1988; 24(3):361-7. PubMed ID: 3174604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of active and inactive forms of isocitrate dehydrogenase from Escherichia coli ML 308.
    Borthwick AC; Holms WH; Nimmo HG
    Eur J Biochem; 1984 Jun; 141(2):393-400. PubMed ID: 6376125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteinyl peptides of pig heart NADP-dependent isocitrate dehydrogenase that are modified upon inactivation by N-ethylmaleimide.
    Smyth GE; Colman RF
    J Biol Chem; 1991 Aug; 266(23):14918-25. PubMed ID: 1869531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes.
    Hurley JH; Dean AM; Koshland DE; Stroud RM
    Biochemistry; 1991 Sep; 30(35):8671-8. PubMed ID: 1888729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isocitrate dehydrogenase of Tetrahymena pyriformis.
    Vidal P; Machado A
    Mol Cell Biochem; 1977 Oct; 17(3):151-6. PubMed ID: 22034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate.
    Bennett PM; Holms WH
    J Gen Microbiol; 1975 Mar; 87(1):37-51. PubMed ID: 1094097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.