These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16897308)

  • 1. Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils.
    Pereira SI; Lima AI; Figueira EM
    Microb Ecol; 2006 Aug; 52(2):176-86. PubMed ID: 16897308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent.
    Figueira EM; Lima AI; Pereira SI
    Can J Microbiol; 2005 Jan; 51(1):7-14. PubMed ID: 15782229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil.
    Abd-Alla MH; El-Enany AW; Nafady NA; Khalaf DM; Morsy FM
    Microbiol Res; 2014 Jan; 169(1):49-58. PubMed ID: 23920230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different efficiencies of the same mechanisms result in distinct Cd tolerance within Rhizobium.
    Cardoso P; Corticeiro S; Freitas R; Figueira E
    Ecotoxicol Environ Saf; 2018 Apr; 150():260-269. PubMed ID: 29289861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of metal tolerance in Rhizobium leguminosarum strains isolated from an ultramafic soil.
    Rubio-Sanz L; Brito B; Palacios J
    FEMS Microbiol Lett; 2018 Feb; 365(4):. PubMed ID: 29351606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of rhizobial populations to moderate copper stress applied to an agricultural soil.
    Laguerre G; Courde L; Nouaïm R; Lamy I; Revellin C; Breuil MC; Chaussod R
    Microb Ecol; 2006 Oct; 52(3):426-35. PubMed ID: 16897301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of bacterial communities in heavy metal contaminated soils.
    Roane TM; Kellogg ST
    Can J Microbiol; 1996 Jun; 42(6):593-603. PubMed ID: 8801006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria.
    Fatnassi IC; Chiboub M; Saadani O; Jebara M; Jebara SH
    J Basic Microbiol; 2015 Mar; 55(3):303-11. PubMed ID: 24338717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of conjugative plasmids in pesticide tolerant and multi-resistant bacterial isolates from contaminated alluvial soil.
    Anjum R; Grohmann E; Malik A
    Chemosphere; 2011 Jun; 84(1):175-81. PubMed ID: 21376364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of GSTs in the tolerance of Rhizobium leguminosarum to cadmium.
    Corticeiro S; Freitas R; Figueira E
    Biometals; 2013 Dec; 26(6):879-86. PubMed ID: 23907727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.
    Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH
    C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid and chromosomal basis of tolerance to cadmium and resistance to antibiotics in normal bovine duodenal bacterial flora.
    Bruins MR; Kapil S; Oehme FW
    Vet Hum Toxicol; 2001 Jun; 43(3):129-33. PubMed ID: 11383651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenase genes are uncommon and highly conserved in Rhizobium leguminosarum bv. viciae.
    Fernández D; Toffanin A; Palacios JM; Ruiz-Argüeso T; Imperial J
    FEMS Microbiol Lett; 2005 Dec; 253(1):83-8. PubMed ID: 16216440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.
    Bhat SV; Booth SC; McGrath SG; Dahms TE
    PLoS One; 2014; 10(4):e0123813. PubMed ID: 25919284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.
    Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M
    Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of rhizobia from legumes of agronomic interest grown in semi-arid areas of Central Spain relates genetic differences to soil properties.
    Ruiz-Díez B; Fajardo S; Felipe Mdel R; Fernández-Pascual M
    J Basic Microbiol; 2012 Feb; 52(1):66-78. PubMed ID: 21953333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils.
    Palmer KM; Young JP
    Appl Environ Microbiol; 2000 Jun; 66(6):2445-50. PubMed ID: 10831423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete genome sequence of the Streptomyces sp. strain CdTB01, a bacterium tolerant to cadmium.
    Zhou G; Yang H; Zhou H; Wang C; Fu F; Yu Y; Lu X; Tian Y
    J Biotechnol; 2016 Jul; 229():42-3. PubMed ID: 27165503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.