These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16897591)

  • 1. A direct observation technique for evaluating sclerotium germination by Macrophomina phaseolina and effects of biocontrol materials on survival of sclerotia in soil.
    Pratt RG
    Mycopathologia; 2006 Aug; 162(2):121-31. PubMed ID: 16897591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycoparasitism of sclerotial fungi by Teratosperma oligocladum.
    Ayers WA; Adams PB
    Can J Microbiol; 1981 Sep; 27(9):886-92. PubMed ID: 7198002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biological and epidemiological characteristics of the pathogen of hypertrophy sorosis scleroteniosis, Ciboria shiraiana].
    Lü R; Zhao A; Yu J; Wang C; Liu C; Cai Y; Yu M
    Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):388-98. PubMed ID: 29756437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor.
    Wu BM; Subbarao KV
    Phytopathology; 2008 Oct; 98(10):1144-52. PubMed ID: 18943461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent.
    Minaxi ; Saxena J
    Mycopathologia; 2010 Sep; 170(3):181-93. PubMed ID: 20446042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.
    Jones EE; Stewart A; Whipps JM
    Fungal Biol; 2011 Sep; 115(9):871-81. PubMed ID: 21872184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum.
    Soylu S; Yigitbas H; Soylu EM; Kurt S
    J Appl Microbiol; 2007 Oct; 103(4):1021-30. PubMed ID: 17897206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide Initiates the Hyphal Differentiation to Microsclerotia Formation of
    Liu HH; Huang CC; Lin YH; Tseng MN; Chang HX
    Microbiol Spectr; 2022 Feb; 10(1):e0208421. PubMed ID: 35080446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting germination, mycoparasitism, and survival of Sporidesmium sclerotivorum.
    Ayers WA; Adams PB
    Can J Microbiol; 1979 Sep; 25(9):1021-6. PubMed ID: 44222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic Soil Disinfestation Reduces Germination and Affects Colonization of Sclerotium rolfsii Sclerotia.
    Shrestha U; Dee ME; Ownley BH; Butler DM
    Phytopathology; 2018 Mar; 108(3):342-351. PubMed ID: 29045190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina.
    A P S; Thankappan S; G K; Uthandi S
    Microbiol Res; 2020 Jun; 236():126436. PubMed ID: 32179388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple and Effective Technique for Production of Pycnidia and Pycnidiospores by
    Zhao X; Ni Y; Liu X; Zhao H; Wang J; Chen YC; Chen W; Liu H
    Plant Dis; 2020 Apr; 104(4):1183-1187. PubMed ID: 32065566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus.
    Kim TG; Knudsen GR
    Fungal Biol; 2011; 115(4-5):317-25. PubMed ID: 21530913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Report of Crown and Root Rot in Strawberry Caused by Macrophomina phaseolina in Israel.
    Zveibil A; Freeman S
    Plant Dis; 2005 Sep; 89(9):1014. PubMed ID: 30786651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of volatile inhibitors from natural and amended soils on germination of sclerotia of Macrophomina phaseolina.
    Papavizas GC
    Can J Microbiol; 1976 Jul; 22(7):1034-9. PubMed ID: 963611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of
    Kim TG; Knudsen GR
    J Microbiol Biotechnol; 2021 Jun; 31(6):815-822. PubMed ID: 33782223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monacrosporium janus sp. nov., a new nematode-trapping hyphomycete parasitizing sclerotia and hyphae of Sclerotinia sclerotiorum.
    Li SD; Miao ZQ; Zhang YH; Liu XZ
    Mycol Res; 2003 Jul; 107(Pt 7):888-94. PubMed ID: 12967217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histopathological changes in root and stem of mungbean exposed to Macrophomina phaseolina and dry biomass of Chenopodium quinoa.
    Khan IH; Javaid A
    Microsc Res Tech; 2022 Jul; 85(7):2596-2606. PubMed ID: 35366387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Soil Temperature and Moisture on Eruptive Germination and Viability of Sclerotia of Sclerotinia minor and S. sclerotiorum.
    Matheron ME; Porchas M
    Plant Dis; 2005 Jan; 89(1):50-54. PubMed ID: 30795284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. trans-2-Octenal, a single compound of a fungal origin, controls Sclerotium rolfsii, both in vitro and in soil.
    Liarzi O; Benichis M; Gamliel A; Ezra D
    Pest Manag Sci; 2020 Jun; 76(6):2068-2071. PubMed ID: 31943663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.