BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 16897726)

  • 1. Escalating dose pretreatment induces pharmacodynamic and not pharmacokinetic tolerance to a subsequent high-dose methamphetamine binge.
    O'Neil ML; Kuczenski R; Segal DS; Cho AK; Lacan G; Melega WP
    Synapse; 2006 Nov; 60(6):465-73. PubMed ID: 16897726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge.
    Segal DS; Kuczenski R; O'Neil ML; Melega WP; Cho AK
    Neuropsychopharmacology; 2003 Oct; 28(10):1730-40. PubMed ID: 12865898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single or multiple injections of methamphetamine increased dopamine turnover but did not decrease tyrosine hydroxylase levels or cleave caspase-3 in caudate-putamen.
    Pereira FC; Lourenço ES; Borges F; Morgadinho T; Ribeiro CF; Macedo TR; Ali SF
    Synapse; 2006 Sep; 60(3):185-93. PubMed ID: 16739116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistence of tolerance to methamphetamine-induced monoamine deficits.
    Danaceau JP; Deering CE; Day JE; Smeal SJ; Johnson-Davis KL; Fleckenstein AE; Wilkins DG
    Eur J Pharmacol; 2007 Mar; 559(1):46-54. PubMed ID: 17239369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous locomotor activity and pharmacokinetics of intravenous methamphetamine and its metabolite amphetamine in the rat.
    Rivière GJ; Byrnes KA; Gentry WB; Owens SM
    J Pharmacol Exp Ther; 1999 Dec; 291(3):1220-6. PubMed ID: 10565845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methamphetamine exposure during the preweanling period causes prolonged changes in dorsal striatal protein kinase A activity, dopamine D2-like binding sites, and dopamine content.
    Crawford CA; Williams MT; Newman ER; McDougall SA; Vorhees CV
    Synapse; 2003 Jun; 48(3):131-7. PubMed ID: 12645038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats.
    Milesi-Hallé A; Hendrickson HP; Laurenzana EM; Gentry WB; Owens SM
    Toxicol Appl Pharmacol; 2005 Dec; 209(3):203-13. PubMed ID: 15916788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escalating dose, multiple binge methamphetamine regimen does not impair recognition memory in rats.
    Clark RE; Kuczenski R; Segal DS
    Synapse; 2007 Jul; 61(7):515-22. PubMed ID: 17415795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methamphetamine, morphine, and their combination: acute changes in striatal dopaminergic transmission evaluated by microdialysis in awake rats.
    Pereira FC; Lourenço E; Milhazes N; Morgadinho T; Ribeiro CF; Ali SF; Macedo TR
    Ann N Y Acad Sci; 2006 Aug; 1074():160-73. PubMed ID: 17105914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human methamphetamine pharmacokinetics simulated in the rat: behavioral and neurochemical effects of a 72-h binge.
    Kuczenski R; Segal DS; Melega WP; Lacan G; McCunney SJ
    Neuropsychopharmacology; 2009 Oct; 34(11):2430-41. PubMed ID: 19571794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse.
    Cho AK; Melega WP; Kuczenski R; Segal DS
    Synapse; 2001 Feb; 39(2):161-6. PubMed ID: 11180503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methamphetamine-induced spectrin proteolysis in the rat striatum.
    Staszewski RD; Yamamoto BK
    J Neurochem; 2006 Mar; 96(5):1267-76. PubMed ID: 16417574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux.
    Stephans SE; Yamamoto BK
    Synapse; 1994 Jul; 17(3):203-9. PubMed ID: 7974204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of organic cation transporter-3 in methamphetamine disposition and its behavioral response in rats.
    Nakayama H; Kitaichi K; Ito Y; Hashimoto K; Takagi K; Yokoi T; Takagi K; Ozaki N; Yamamoto T; Hasegawa T
    Brain Res; 2007 Dec; 1184():260-9. PubMed ID: 17988657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methamphetamine influences on recognition memory: comparison of escalating and single-day dosing regimens.
    Belcher AM; Feinstein EM; O'Dell SJ; Marshall JF
    Neuropsychopharmacology; 2008 May; 33(6):1453-63. PubMed ID: 17637607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mithramycin protects against dopaminergic neurotoxicity in the mouse brain after administration of methamphetamine.
    Hagiwara H; Iyo M; Hashimoto K
    Brain Res; 2009 Dec; 1301():189-96. PubMed ID: 19748494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers.
    Killinger BA; Moszczynska A
    J Neurochem; 2016 Feb; 136(3):510-25. PubMed ID: 26465779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral profile.
    Segal DS; Kuczenski R
    J Pharmacol Exp Ther; 1999 Oct; 291(1):19-30. PubMed ID: 10490882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling.
    Melega WP; Cho AK; Harvey D; Laćan G
    Synapse; 2007 Apr; 61(4):216-20. PubMed ID: 17230548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia.
    Metzger RR; Haughey HM; Wilkins DG; Gibb JW; Hanson GR; Fleckenstein AE
    J Pharmacol Exp Ther; 2000 Dec; 295(3):1077-85. PubMed ID: 11082443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.