These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16898219)

  • 1. Numerical predictions of the thermal behaviour and resultant effects of grouting cements while setting prosthetic components in bone.
    Quarini GL; Learmonth ID; Gheduzzi S
    Proc Inst Mech Eng H; 2006 Jul; 220(5):625-34. PubMed ID: 16898219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element thermal analysis of bone cement for joint replacements.
    Li C; Kotha S; Huang CH; Mason J; Yakimicki D; Hawkins M
    J Biomech Eng; 2003 Jun; 125(3):315-22. PubMed ID: 12929235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty.
    Li C; Kotha S; Mason J
    Biomed Mater Eng; 2003; 13(4):419-28. PubMed ID: 14646056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of thermal bone necrosis during cementation of femoral prostheses.
    Mazzullo S; Paolini M; Verdi C
    J Math Biol; 1991; 29(5):475-94. PubMed ID: 1875163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal analysis of bone cement polymerisation at the cement-bone interface.
    Stańczyk M; van Rietbergen B
    J Biomech; 2004 Dec; 37(12):1803-10. PubMed ID: 15519587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty--a numerical study.
    Janssen D; Srinivasan P; Scheerlinck T; Verdonschot N
    J Orthop Res; 2012 Mar; 30(3):364-70. PubMed ID: 21882236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of a quasi-dynamic and a static extraction method for the cytotoxic evaluation of acrylic bone cements.
    Hoess A; López A; Engqvist H; Ott MK; Persson C
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():274-82. PubMed ID: 26952424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement.
    Vallo CI
    J Biomed Mater Res; 2002; 63(5):627-42. PubMed ID: 12209910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature changes in acrylic cement on prosthetic implant surgery. An investigation into the relationship between quantity and temperature changes at different levels on loosening of the implant.
    Calderale PM; Pipino F
    Ital J Orthop Traumatol; 1983 Mar; 9(1):57-65. PubMed ID: 6885390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modelling of bone cement polymerization: temperature and residual stresses.
    Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M
    Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
    Terrier A; Büchler P; Farron A
    Clin Biomech (Bristol); 2005 Aug; 20(7):710-7. PubMed ID: 15961203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loosening of the cemented hip prosthesis. The importance of heat injury.
    Mjöberg B
    Acta Orthop Scand Suppl; 1986; 221():1-40. PubMed ID: 3468743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temperature problem at the bone-acrylic cement interface of the total hip replacement.
    DiPisa JA; Sih GS; Berman AT
    Clin Orthop Relat Res; 1976; (121):95-8. PubMed ID: 991524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of stem preheating on the fatigue behaviour of bone cement around hip prostheses.
    Bialoblocka-Juszczyk E; Baleani M; Cristofolini L; Viceconti M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):637-41. PubMed ID: 19623915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some fundamental aspects of human joint replacement. Analyses of stresses and heat conduction in bone-prosthesis structures.
    Huiskes R
    Acta Orthop Scand Suppl; 1980; 185():1-208. PubMed ID: 6938104
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of curing characteristics on residual stress generation in polymethyl methacrylate bone cements.
    Hingston JA; Dunne NJ; Looney L; McGuinness GB
    Proc Inst Mech Eng H; 2008 Aug; 222(6):933-45. PubMed ID: 18935810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.
    Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH
    J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curing characteristics of acrylic bone cement.
    Dunne NJ; Orr JF
    J Mater Sci Mater Med; 2002 Jan; 13(1):17-22. PubMed ID: 15348199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pre-cooling and pre-heating procedures on cement polymerisation and thermal osteonecrosis in cemented hip replacements [Medical Engineering & Physics 25 (2003) 559-64].
    Talbot JC; Shaw DL
    Med Eng Phys; 2005 Jun; 27(5):439; author reply 441-2. PubMed ID: 15863352
    [No Abstract]   [Full Text] [Related]  

  • 20. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.
    Lv Y; Li A; Zhou F; Pan X; Liang F; Qu X; Qiu D; Yang Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11280-5. PubMed ID: 25966790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.