BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16898421)

  • 1. Characterization of the aldehyde reactive probe reaction with AP-sites in DNA: influence of AP-lyase on adduct stability.
    Bennett SE; Kitner J
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(7):823-42. PubMed ID: 16898421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved measurement of dibenzo[a,l]pyrene-induced abasic sites by the aldehyde-reactive probe assay.
    Chakravarti D; Badawi AF; Venugopal D; Meza JL; Crandall LZ; Rogan EG; Cavalieri EL
    Mutat Res; 2005 Dec; 588(2):158-65. PubMed ID: 16298157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions.
    Nakamura J; Walker VE; Upton PB; Chiang SY; Kow YW; Swenberg JA
    Cancer Res; 1998 Jan; 58(2):222-5. PubMed ID: 9443396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile new tool to quantify abasic sites in DNA and inhibit base excision repair.
    Wei S; Shalhout S; Ahn YH; Bhagwat AS
    DNA Repair (Amst); 2015 Mar; 27():9-18. PubMed ID: 25616257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair kinetics of abasic sites in mammalian cells selectively monitored by the aldehyde reactive probe (ARP).
    Asaeda A; Ide H; Tano K; Takamori Y; Kubo K
    Nucleosides Nucleotides; 1998; 17(1-3):503-13. PubMed ID: 9708359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia pneumoniae AP endonuclease IV could cleave AP sites of double- and single-stranded DNA.
    Liu X; Liu J
    Biochim Biophys Acta; 2005 Dec; 1753(2):217-25. PubMed ID: 16257276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of DNA damage by an aldehyde reactive probe (ARP).
    Kurisu S; Miya T; Terato H; Masaoka A; Ohyama Y; Kubo K; Ide H
    Nucleic Acids Res Suppl; 2001; (1):45-6. PubMed ID: 12836256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability.
    Kang DM; Shin JI; Kim JB; Lee K; Chung JH; Yang HW; Kim KN; Han YS
    BMC Mol Cell Biol; 2019 Nov; 20(1):54. PubMed ID: 31775627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of T4 endonuclease V on polydeoxyribonucleotides with apyrimidinic or apurinic sites.
    Nakatsu Y; Nakabeppu Y; Sekiguchi M
    J Biochem; 1982 Jun; 91(6):2057-65. PubMed ID: 7118862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Caenorhabditis elegans exonuclease-3 and evidence that a Mg2+-dependent variant exhibits a distinct mode of action on damaged DNA.
    Shatilla A; Ishchenko AA; Saparbaev M; Ramotar D
    Biochemistry; 2005 Sep; 44(38):12835-48. PubMed ID: 16171399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights by molecular dynamics simulations into specificity of the major human AP endonuclease toward the benzene-derived DNA adduct, pBQ-C.
    Guliaev AB; Hang B; Singer B
    Nucleic Acids Res; 2004; 32(9):2844-52. PubMed ID: 15155853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a common active site for cleavage of an AP site and the benzene-derived exocyclic adduct, 3,N4-benzetheno-dC, in the major human AP endonuclease.
    Hang B; Rothwell DG; Sagi J; Hickson ID; Singer B
    Biochemistry; 1997 Dec; 36(49):15411-8. PubMed ID: 9398271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease.
    Nguyen LH; Barsky D; Erzberger JP; Wilson DM
    J Mol Biol; 2000 May; 298(3):447-59. PubMed ID: 10772862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and Properties of DNA Adducts Generated by Reactions of Abasic Sites with 1,2-Aminothiols Including Cysteamine, Cysteine Methyl Ester, and Peptides Containing
    Gomina A; Islam T; Shim G; Lei Z; Gates KS
    Chem Res Toxicol; 2024 Feb; 37(2):395-406. PubMed ID: 38181204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of novel chemical probes to detect abasic sites in DNA.
    Kojima N; Takebayashi T; Mikami A; Ohtsuka E; Komatsu Y
    Nucleic Acids Symp Ser (Oxf); 2009; (53):45-6. PubMed ID: 19749252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of abasic sites and oxidative DNA base damage using an ELISA-like assay.
    Kow YW; Dare A
    Methods; 2000 Oct; 22(2):164-9. PubMed ID: 11020331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles.
    Ishchenko AA; Deprez E; Maksimenko A; Brochon JC; Tauc P; Saparbaev MK
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2564-9. PubMed ID: 16473948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair.
    Atamna H; Cheung I; Ames BN
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):686-91. PubMed ID: 10639140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schizosaccharomyces pombe encodes a mutated AP endonuclease 1.
    Laerdahl JK; Korvald H; Nilsen L; Dahl-Michelsen K; Rognes T; Bjørås M; Alseth I
    DNA Repair (Amst); 2011 Mar; 10(3):296-305. PubMed ID: 21193357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.