These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16898587)

  • 1. [Correlation between succinate-dependent Ca2+ accumulation and transamination in the heart and the liver mitochondria of experimental animals].
    Saakian IR; Saakian GG
    Biomed Khim; 2006; 52(3):287-97. PubMed ID: 16898587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Transamination in the mechanism of protection of mitochondria from Ca2+ overload].
    Saakian GG; Saakian IR
    Biomed Khim; 2008; 54(6):696-705. PubMed ID: 19205429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonezymatic formation of succinate in mitochondria under oxidative stress.
    Fedotcheva NI; Sokolov AP; Kondrashova MN
    Free Radic Biol Med; 2006 Jul; 41(1):56-64. PubMed ID: 16781453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dual reciprocal regulation of the succinate oxidation system in heart and liver mitochondria in pathological conditions].
    Saakian IR; Saakian AG
    Vopr Med Khim; 1998; 44(2):151-7. PubMed ID: 9634717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mechanism of reciprocal effects of acetylcholine on oxidation of alpha-ketoglutarate and succinate in heart and liver mitochondria. Factors influencing detection of the acetylcholine effect].
    Doliba MM; Vatamaniuk MZ; Mrvan D; Shostakovs'ka IV; Kondrashova MM
    Ukr Biokhim Zh (1978); 1994; 66(1):41-9. PubMed ID: 7974837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in the contribution of transamination to the respiration of mitochondria during arousal.
    Fedotcheva NI; Litvinova EG; Amerkhanov ZG; Kamzolova SV; Morgunov IG; Kondrashova MN
    Cryo Letters; 2008; 29(1):35-42. PubMed ID: 18392288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 1H NMR study of succinate synthesis from exogenous precursors in oxygen-deprived rat heart mitochondria.
    Pisarenko OI; Khlopkov VN; Ruuge EK
    Biochem Int; 1986 Jan; 12(1):145-53. PubMed ID: 2868722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The drug hypoxen--a new inhibitor of mitochondrial respiration and mitochondrial dehydrogenases].
    Kosenko EA; Abramova MB; Venediktova NI; Popova II; Kaminskiĭ IuG
    Izv Akad Nauk Ser Biol; 2010; (4):411-6. PubMed ID: 20799641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of tricarboxylic acid cycle intermediates on nitric oxide system during acute hypoxia].
    Kurhaliuk NM
    Ukr Biokhim Zh (1999); 2002; 74(4):85-90. PubMed ID: 14964867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Carnosine in adaptation to hypobaric hypoxia].
    Korobov VN; Doliba NM; Telegus IaV
    Biokhimiia; 1993 May; 58(5):740-4. PubMed ID: 8338886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases.
    Denton TT; Thompson CM; Cooper AJ
    Anal Biochem; 2001 Nov; 298(2):265-74. PubMed ID: 11700982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Assessment of energy-dependent Ca2+ transport in myocardial mitochondria in the ventricular fibrillation: potential diagnostic implication].
    Saakian IR; Sherdukalova LF; Saakian GG
    Biomed Khim; 2003; 49(5):463-9. PubMed ID: 16119099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg2+ control of respiration in isolated rat liver mitochondria.
    Panov A; Scarpa A
    Biochemistry; 1996 Oct; 35(39):12849-56. PubMed ID: 8841128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxidative damage of mitochondrial respiration is substrate-dependent.
    Endlicher R; Křiváková P; Rauchová H; Nůsková H; Červinková Z; Drahota Z
    Physiol Res; 2009; 58(5):685-692. PubMed ID: 19093725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of ATP synthase to stimulation of respiration by Ca2+ in heart mitochondria.
    Baniene R; Nauciene Z; Maslauskaite S; Baliutyte G; Mildaziene V
    Syst Biol (Stevenage); 2006 Sep; 153(5):350-3. PubMed ID: 16986315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of glutamine transport in rat brain mitochondria by some amino acids and tricarboxylic acid cycle intermediates.
    Roberg B; Torgner IA; Kvamme E
    Neurochem Res; 1999 Jul; 24(7):809-14. PubMed ID: 10403619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effect of aspartate and glutamate on cardiac mitochondrial function during myocardial infarction in experimental rats.
    Sivakumar R; Anandh Babu PV; Shyamaladevi CS
    Chem Biol Interact; 2008 Nov; 176(2-3):227-33. PubMed ID: 18786522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic clearance of oxaloacetate and mitochondrial complex II respiration: Divergent control in skeletal muscle and brown adipose tissue.
    Yu L; Fink BD; Som R; Rauckhorst AJ; Taylor EB; Sivitz WI
    Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148930. PubMed ID: 36272463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.