These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16898676)

  • 1. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils.
    Alkorta I; Epelde L; Mijangos I; Amezaga I; Garbisu C
    Rev Environ Health; 2006; 21(2):139-52. PubMed ID: 16898676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests.
    Heinlaan M; Kahru A; Kasemets K; Kurvet I; Waterlot C; Sepp K; Dubourguier HC; Douay F
    Altern Lab Anim; 2007 Mar; 35(1):101-10. PubMed ID: 17411358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors.
    Liao VH; Chien MT; Tseng YY; Ou KL
    Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.
    Futra D; Heng LY; Surif S; Ahmad A; Ling TL
    Sensors (Basel); 2014 Dec; 14(12):23248-68. PubMed ID: 25490588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial metal-lux biosensors for a rapid determination of the heavy metal bioavailability and toxicity in solid samples.
    Corbisier P
    Res Microbiol; 1997; 148(6):534-6. PubMed ID: 9765839
    [No Abstract]   [Full Text] [Related]  

  • 6. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.
    Rosado D; Usero J; Morillo J
    Chemosphere; 2016 Jun; 153():10-7. PubMed ID: 27002282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP
    J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of ecotoxicity test and ecoscores to improve the management of polluted soils: case of a secondary lead smelter plant.
    Foucault Y; Durand MJ; Tack K; Schreck E; Geret F; Leveque T; Pradere P; Goix S; Dumat C
    J Hazard Mater; 2013 Feb; 246-247():291-9. PubMed ID: 23328625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests.
    Maisto G; Manzo S; De Nicola F; Carotenuto R; Rocco A; Alfani A
    J Environ Monit; 2011 Nov; 13(11):3049-56. PubMed ID: 21918769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a general toxicity test to predict heavy metal concentrations in residential soils.
    Aelion CM; Davis HT
    Chemosphere; 2007 Mar; 67(5):1043-9. PubMed ID: 17140621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrations and chemical fractions of Cu, Zn, Cd, and Pb at ten metallurgical sites in China.
    Yang B; Ren J; Wang M; Luo H; Cao Y
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3603-3611. PubMed ID: 30523530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure.
    Sun Y; Xie Z; Li J; Xu J; Chen Z; Naidu R
    Environ Geochem Health; 2006; 28(1-2):73-8. PubMed ID: 16528591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment.
    Komaitis E; Vasiliou E; Kremmydas G; Georgakopoulos DG; Georgiou C
    Sensors (Basel); 2010; 10(8):7089-98. PubMed ID: 22163592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing toxicity of metal contaminated soil from glassworks sites with a battery of biotests.
    Hagner M; Romantschuk M; Penttinen OP; Egfors A; Marchand C; Augustsson A
    Sci Total Environ; 2018 Feb; 613-614():30-38. PubMed ID: 28903077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays.
    Loureiro S; Ferreira AL; Soares AM; Nogueira AJ
    Chemosphere; 2005 Oct; 61(2):168-77. PubMed ID: 16084560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental hazard screening of a metal-polluted site using pressurized liquid extraction and two in vitro bioassays.
    Ragnvaldsson D; Berglind R; Tysklind M; Leffler P
    Ambio; 2007 Sep; 36(6):494-501. PubMed ID: 17985704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure].
    Sun YF; Xie ZM; Xu JM; Li J; Zhao KL
    Huan Jing Ke Xue; 2005 May; 26(3):152-6. PubMed ID: 16124489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China.
    Zhang J; Li H; Zhou Y; Dou L; Cai L; Mo L; You J
    Environ Pollut; 2018 Apr; 235():710-719. PubMed ID: 29339340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors.
    Riether KB; Dollard MA; Billard P
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):712-6. PubMed ID: 11778883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.