These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment. Menning CA; Hwu HH; Chen JG J Phys Chem B; 2006 Aug; 110(31):15471-7. PubMed ID: 16884269 [TBL] [Abstract][Full Text] [Related]
5. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874 [TBL] [Abstract][Full Text] [Related]
6. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts. Noh SH; Seo MH; Seo JK; Fischer P; Han B Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215 [TBL] [Abstract][Full Text] [Related]
9. Infrared emission and theoretical study of carbon monoxide adsorbed on alumina-supported Rh, Ir, and Pt catalysts. Korányi TI; Mihály J; Pfeifer E; Németh C; Yuzhakova T; Mink J J Phys Chem A; 2006 Feb; 110(5):1817-23. PubMed ID: 16451013 [TBL] [Abstract][Full Text] [Related]
10. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Hansen HA; Rossmeisl J; Nørskov JK Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233 [TBL] [Abstract][Full Text] [Related]
11. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics. Xu Y; Getman RB; Shelton WA; Schneider WF Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au). Fernández JL; Walsh DA; Bard AJ J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486 [TBL] [Abstract][Full Text] [Related]
13. Structure sensitivity of methanol electrooxidation on transition metals. Ferrin P; Mavrikakis M J Am Chem Soc; 2009 Oct; 131(40):14381-9. PubMed ID: 19754206 [TBL] [Abstract][Full Text] [Related]
16. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table. Neyman KM; Inntam C; Matveev AV; Nasluzov VA; Rösch N J Am Chem Soc; 2005 Aug; 127(33):11652-60. PubMed ID: 16104741 [TBL] [Abstract][Full Text] [Related]
17. Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. Wakabayashi N; Takeichi M; Uchida H; Watanabe M J Phys Chem B; 2005 Mar; 109(12):5836-41. PubMed ID: 16851636 [TBL] [Abstract][Full Text] [Related]
18. First-principles study of superabundant vacancy formation in metal hydrides. Zhang C; Alavi A J Am Chem Soc; 2005 Jul; 127(27):9808-17. PubMed ID: 15998085 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures. Menning CA; Chen JG J Chem Phys; 2008 Apr; 128(16):164703. PubMed ID: 18447475 [TBL] [Abstract][Full Text] [Related]
20. Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. Su HY; Bao XH; Li WX J Chem Phys; 2008 May; 128(19):194707. PubMed ID: 18500886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]